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Dynamics of granular avalanches caused by local perturbations
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Surface flow of granular material is investigated within a continuum approach in two dimensions. The
dynamics is described by the nonlinear coupling between a mobile layer and an erodible bed of static grains.
Following previous studies, we use mass and momentum conservation to derive St. Venant-like equations for
the evolution of the thicknesR of the mobile layer and the profil2 of the bed. This approach allows the
rheology in the flowing layer to be specified independently, and we consider in detail the two following
models: a constant plug flow and a linear velocity profile. We study and compare these models for nonstation-
ary avalanches triggered by a localized amount of mobile grains on a bed of initially constant slope. We solve
analytically the nonlinear dynamical equations by the method of characteristics. This enables us to investigate
the temporal evolution of the avalanche size, amplitude, and shape as a function of model parameters and
initial conditions. In particular, we can compute their large time behavior as well as the condition for the
formation of shocks.
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[. INTRODUCTION case, the St. Venant equations for erodible beds coincide with
e Bouchaud-Cates-Prakash-EdwarBCRE) equations
at were obtained on more phenomenological groysds
Alternative models, not based on the St. Venant approach,

The dynamics of granular flows and avalanches is of gre
interest in many geophysical and industrial situations, suc
as debris flows, snow avalanches, cliff collapse, and silo di X
charges. Mathematical models describing flows on stati€@n be found in Ref49,10].

beds have been proposed and studied in the last thirty years, AN important situation is that of nonuniform, unsteady
An important stone in the construction of such models ha valanches, whose dynamics is more c_:ompllcated to capture
han steady flows. The success or failure to describe such

?18—83{]] Ialgfénrézg“Ft)slpre)[li/s?lc:isstzvr?g\?é ;:gegé;nrgeci?;tvev?erls(géitqations allows one to discriminate between different theo-
L ' ) i g etical models. With St. Venant equations calibrated to de-
in this problem, and a lot of Interesting experimental res‘uns‘scribe uniform steady flows on a rough bed, one can capture
have been accumulated, as reviewed in RR&f. In that pa- o gteady front§11] and a generic nonuniform, unsteady
per, a set of experiments and numerical simulations ORjo\: that of an initially confined granular mass which is
steady uniform dense granular flows in different geometrieggdenly released and runs down the very same rough bed
is presented and analyzed using simple physical ideas. Thghich is initially free of grains[12]. This situation is of
aim is to identify the important physical ingredients to bejnterest in a geophysical context as a model of cliff collapse
plugged into the equations proposed for the modeling 0{f13,14. Another famous example is that of an initial static
these avalanches. An interesting theoretical framework fofayer of grains on a plane, where avalanches are triggered by
the description of granular flows follows the St. Venant-likea local solicitation with a pointy objedtl5,16. The nice
approach for thin flows in hydrodynamics, in which conser-experimental pictures show two types of behavior: a “trian-
vation equations are integrated over the depth of the flidw  gular avalanche” when the thickness of the grain layer is
This was proposed in Rdf2] in the case of flows on inclined small, and an avalanche with an “uphill” propagative front
rough beds. The simple friction law of the latter model haswhen the layer is thicker. It was observed that depth-
been improved recently by Pouliquen who proposed an emaveraged equations, even with the empirical friction law of
pirical description of friction based on scaling propertiesPouliquen, do not agree in the long-time limit with experi-
measured for steady uniform flow6]. The St. Venant ap- ments performed on an initially static layer of grajd<].
proach can also be extended to erodible beds. An interesting In the present paper, our aim is also to deal with unsteady
paper where the corresponding equations are established aadd nonuniform granular flows in a geometry close to these
discussed is that of Douaday al.[7]. The new feature of this elementary “response” situations where avalanches are
situation which makes it very different from the static bed caused by local perturbations. More precisely, we look at the
case is that the boundary between flowing grains and statidynamical evolution of a uniform slope on which some
grains becomes itself a dynamical variable, which feeds backmount of rolling grains is initially deposited locallzee

on the properties of the flowing layer. In a special limiting Fig. 1). However, unlike the above examples, we shall focus
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FIG. 1. Rolling grains are locally deposited on an erodible sand
bed which has initially a uniform slopg+m, wheren is the tan-
gent of the angle of repose.

on avalanches running over an erodible bed, i.e., an infinitely
deep grain layer for which the selected thickness of moving
grains is not fixeda priori or bounded by a plane. This

situation then has one extra dynamical degree of freedon}(t’X) (crosses The grains flow from the right to the left, The

we ?'50_ use St. VenanF equations but, as wil be_ made morgashed box is the control volume for which mass and momentum
precise in the next section, one needs to use additional phys&bnservation laws are written.
cal assumptions to close these equations. We motivate two

different assumptions, corresponding to simple shapes of the , ) ) i i
velocity profile within the flowing layer, that lead to two sets R Of the rolling grain layer, both functions of time and hori-
of coupled nonlinear differential equations for the shape ofONtal positionx. The aim of this section is tere-establish
the bed and the height of the flowing layer. These equation&oupled differential equations for the variablesand Z de-

although oversimplified, can be argued to correspond to thRicted in Fig. 2. These equations en_code _the conservation of
limiting cases of thin and thick flows, when the slope is closetn® number of grains as well as their horizontal momentum

to the angle of repose. Moreover, they turn out to be exactly/]: They describe how static grains may be dislodged and

soluble, which provides a solid starting point to describe the&sontribute to the flowerosion, and, vice versa, how moving
admittedly more complex experimental situations. In order tgrains may come to regtieposition [8].

solve these equations, we apply the methods of characteris-
tics well known in hydrodynamic§l7]. This method was
already used in the context of avalanches in, e.g., Refs.

[18,19. BesidesR andZ, another important field is of course the

After the derivation of the model in Sec. Il in which we S :
shall specify the physical assumptions made, we present ﬂhveelocny in the moving layer. Let us denote hyx,y) the

. . o . orizontal component of the velocity profile in this layer—
solutions(corresponding to the two limiting cases mennonedaIthou h not exolicit. time dependence wfis understood
above in the two following sections. We detail the different 9 phictt, P :

e . e choose to work in the,y coordinate frame rather than in
predictions of our models, and compare how the triggere . o
. . L he frame locally tangent to the slope, since the latter is itself
avalanches die out or grow, depending on the initial slope o

the bed profile, and discuss the possible appearance § dynamical quantity. The depth-averaged velocity of the
’ H : — Z+R 1 H
shocks. We finally discuss various shortcomings of the mod- ow is defined aJ=(1/R)J7™dy ux,y). With this quan-

els, in particular concerning the detailed description of aval¥: the number of particles passing through a vertical line at

lanche fronts, and possible future improvements. positionx during the time intervaditis (p/ MRU dt wherep

The present paper is rather technical, but we hope that thig the mass de_nS|ty of the granular ma_ltenal amthe mass
scope of the method used is sufficiently broad to warran! @ Single grain. The difference of this numberxaand x
interest in itself; furthermore, obtaining an explicit exact re-+dX Mmakes the voluméR+Z)dx change, so that the conser-
sult for the shape of avalanche shapes and sizes gives impdf@tion of mass reads
tant benchmarks to which experiments can be compared, and
will eventually help in selecting the correct set of hydrody-
namical equations for granular avalanches.

FIG. 2. Flowing layer thicknes&(t,x) (gray) and bed profile

A. Conservation equations

H(R+2Z) = 3(RU), 1)

which is sometimes denoted as an Exner equation in geo-

physics. In a similar way, the component of the momentum

passing through the vertical line at positi@nduring dt is
Observations show that granular avalanches consist of @gRW dt{ whereW is the average of the square of the veloc-

thin moving layer of grains over a bed @juasjstatic ones ity: W:(l/R)f?Rdy A(x,y). The change of horizontal mo-

[20]. The two natural variables in this model are thereforementumpRU dxin the control volume&see Fig. 2 can then

the profile of the static/flowing boundagy and the thickness be written as

Il. ST. VENANT EQUATIONS FOR GRANULAR
AVALANCHES
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1 the three quantitiet),R, andZ are independent dynamical
d(RU)dx= d(RWdx+ —dF,, ) variables. A complete description would therefore require an
P additional equation of “internal force balance,” where one
where dF, is the x component of the forces acting on this should specify the part of the forces acting on the moving
volume. layer that contribute to the acceleration and friction of the
rolling grains rather than the erosion/deposition processes,
i.e., the exchange betweé&handZ.
In order to close the above equations FoandZ only, we
These forces are of two kinds: those coming from therather make an explicit assumption on the shape of the ve-
lateral sides through the stresg, and those due to the con- |ocity profile u. The integrals defining) andW can then be
tact between the rolling layer and the bed. Assuming a horiexpressed as a function B This means that we implicitly
zontal normal stress proportional to the “hydrostatic” pres-assumenstantaneousdaptation of the velocity to the flow.
sure ay,(X,y)=bpg(R+Z-y), the corresponding force is Two limiting assumptions for the velocity profile will be in-
S5 Rdy O'XX:%bpng. Numerical simulations suggest values vestigated below(i) the plug flow for whichu(x,y)=U
for b that increase from roughly one half in static piling to =Cst (named modeP for “plug”), (ii) a linear velocity pro-
unity for uniform steady flowg4,21,23. In Ref. [2] the file u(x,y)=vy (named modeL for “linear”).
value ofb is obtained for unsteady and inhomogeneous situ- Case(ii) is strongly supported by experiments and simu-
ations from a Mohr-Coulomb yield criterion. It turns out that |ations performed orsteadytwo-dimensional(2D) systems
b can increas¢decreasecompared to unity if the grains are or when the slope is close to the angle of reppt8,29.
compresseddecompressedy the flow. For the sake of sim- The natural selection of this linear profile is still a puzzling
plicity, we consider herdé as a phenomenologicabnstant  issue and is the result of several mechanisms at the grain
Taking the difference of this force on the two sides of thelevel (e.g., trapping or at larger scalegnonlocal effects,
control volume, the contribution of the horizontal normal clustering [30,31. In particular, it should be emphasized
stress tadF, finally readsbpgRd,R dx To compute the fric-  that the velocity gradient is found to be constant, and it is the
tional part ofdF,, we assume that the grains in the controlthickness of the rolling layeR which adapts its value to the
volume behave, with respect to the bed, like a frictional solidexternal imposed shear stress, see, e.g., R4f32]. This
(with normal reactiorN and friction forceT=uN) with w the  linear profile assumption leads tbxR. In contrast, note that
friction coefficient. Definingd by tan6=4,Z, the balance of for steady granular flows on a fixed steep and rough inclined
the weight of this volume givepgR dx=Ncosf+Tsind.  plane, a Bagnold-like velocity profil®)«R¥2 is observed
The horizontal contribution ol andT to dF, (to the lowest  [29]. However, in both cases, the velocity tends to zero for
order in ¢ and u) is pgR(dZ~-p)dx. In summary, we get infinitely thin flowing layers, in stark contrast with the fact
_ that avalanche fronts propagate at a nonzero velocity. For
dFx=bpgRAR dx+ pgR(Z ~ wdx. ) very thin flows(whenR is of the order of a grain diameter or
We have assumed that the granular dengity the same les9, it is more reasonable to assume a constant plug flow,
in the moving and the static parts, which is certainly a validcorresponding to casé), that leads toU(R—0)=Uy>0
hypothesis for dense flows as considered here. More impof33]. Physically, this corresponds to the fact that there cannot
tantly, the friction coefficieni. will be taken as a constant in be defined a velocity gradient on the scale of one grain. If the
the following. We note that a more sophisticated friction lawflowing layer is of intermediate thickness, we expect that the
required aR dependentu [6]. Moreover, it is well estab- velocity profile is more complicated, and neither of the two
lished that there are few degrees of hysteresis between tladoove assumptions can be quantitative. However, we expect
starting and the stopping anglg23], which can be simply that these two limiting cases can be used to guess the quali-
understood even at the scale of a single grain rolling down &ative behavior in the general case.
“pile” consisting of a layer of regularly spaced fixed grains  Finally, note that a model similar to our Eq4)—(3) has
[24,25. As will be emphasized in the conclusion, this slight been very recently studied by Khakher al. [34], but for
difference is of great importance when it comes to the dedifferent geometries and initial conditiofiseap and rotating
scription of regions where the moving layer is about to jamcylinder flows. Their momentum balance equation has,
or the static grains about to move, i.e., at the feet of avahowever, an additional term which describes grain collisions
lanche fronts(R— 0). Besides, it has been shown that in in the mobile phase. Thus they combine effects of internal
quasi-two-dimensional experiments conducted in a thirflissipation[35] and external forces as gravity and solid like
channel between two plates, the friction of the rolling onfriction between the two phases.
those plates plays a major role in the dynamics of the ava-
lanche[26,27]. Such a boundary effect is not encoded here.

B. Stresses and forces

D. Higher order derivatives

The depth-averaged conservations laws lead to the first
order differential equation€l) and(2). However, in general

In the case of a fixed nonerodible proflethe above two higher order derivatives can arise both from the dependence
St. Venant conservation equations can be used for the detasf the velocityU on spatial derivatives o ,R, and via the
mination of the space and time evolution RfandU [12].  force acting on the test volume. For example, the depth-
On the other hand, if the bed profile is a dynamical quantityaveraged velocity) can depend on the local slopgZ of the

C. Flow profiles
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sand bed. For sma#l Z this leads to linear order in Eqél) 251
and(2) to second order derivatives dfand terms quadratic
in first order derivatives of both profiles. The ford&, on ol
the test volume depends beyond lowest order én
=arctarid,Z) also nonlinear on first order derivatives af
Diffusive terms are also present in more phenomenological"s'
approaches like the BCRE modg3]. Our above assump-
tions neglect such kinds of higher order derivatives or non- 1}
linear powers of first order derivatives since we are inter-
ested in only slightly curved profiles. The effect of such
diffusionlike terms would be a “smoothening” of profiles
with larger curvature. For example, bumps become flatter
and valleys are filled with grains during the flow evolution. ' ' '

. . . . . .01 0.1 1 10 100
Another effect of higher order derivatives is the regulariza- X
tion of shocks which can occur in the first order equations,
see Sec. lll A 2. Our first order equations should contain the FIG. 3. Bold curve: plot of the Lambert's functioi(x). Thin
most important physical mechanisms for the purpose of anasurves: small and large expansionsiV(x) ~x-x2 and W(x) ~ In x
lyzing the effect of local perturbations of initially flat in- —InInx, respectively.
clined sand beds.

bations in the form of an initially localized amouR}(x) of
IIl. PLUG FLOW: CONSTANT VELOCITY PROFILE rolling grains. Ip fact, for arbitrgry initial profileRy(x) apd
(MODEL P) Zy(x) the solution of Egs(4) with b=0 can be obtained
_ _ analytically in implicit form. Using the method of character-
~ For a plug flow with a constant average horizontal veloc-istic curves, see Appendix A, we introduce the new coordi-
|ty U we trivially getW=U?, and one obtains from the analy- natesa(t,x) and B(t,x). The mapping between the two co-
sis in Sec. Il the model ordinate systems depends on the solutionRtr,x), Z(t,x)
4Z=-RA4,Z - bRAR, (4a) and thus on the |n|t_|al_ proﬂles_due to t_he nonlme_anue_s. The
so-called characteristic equations, which determine simulta-
neously the coordinate mapping and the profiles, for this
R=0,R+Rd,Z+bRi,R. (4b) model ¥ead Pping P

Here the dimensionledsx, R, andZ are measured in units of

U?/g, andt is rescaled byJ/g. Furthermore, as we are in- 9aX = £40at =0, (53
terested in surface profiles close to the avalanche sigie _

is measured relative to the critical slope, i.e., it is replaced by Ipx = {-0pt =0, (Sb)
Z+ux. The quantityb is then the only free parameter of

these equations. Recall that an isotropic stress distribution -R3,Z+({,~R)J,R=0, (50)
corresponds td=1. Note also that setting=0 yields the

so-called BCRE model introduced in RE8] (although with- —RdgZ+({--R)JzR=0, (5d)

out the diffusive terms considered ther&ny small but finite . e . .

b thus leads to new nonlinearities. Before we study theWlth the characteristic directions given by

propagation of a localized perturbation, as a first simple =-1, =R (6)

benchmark of the model, we briefly note the predictions of . . . .

the model for the initial situation of a constant slaBgx) The solution of these equations can be obtained explicitly,

=mx and a homogeneous amount of rolling graifg(x) B dg’

=p. It is easy to see that in this case the thickness of the (e, B) = —f 1+R@.3)’ (79

mobile layer grows(or decay$ exponentially in time, de- o '

pending on the sign ah, with R(t,x)=e™. The bed profile

is then given byZ(t,x)=mx+eo(1-e™). Note that this solu- X(a,p) == B~ t(a,p). (7b)

tion doesnot depend orb sinceR(t,x) is independent ok As function of these new coordinates the solution can be
written in the closed form

A. Infinite stress anisotropy (b=0) Z(a, B) = Zo(a), (83
1. Analytical solution

- - (=B)+Zo(=B)=Zp(a)

This nonlinear model has been studied previously for the R(a,) = W[R(= ) 2m2a7P72cT], (8b)
case of a bed profile consisting of two regions of constant buivhere W is Lambert’s function36], see Fig. 3. Before we
different slopes and an initially homogeneotsonstant  proceed with special choices for localized initial profiles
amount of rolling grain$18]. However, the method of char- Ry(x), we would like to point out that the model of Eqg)
acteristic curves can be also employed to study local pertumwith b=0 can be still solved exactly if the coefficient &Z
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on the right hand side of both equations is a general function A X ()
of R(t,x), F(R). The above case correspondsfAR)=R. m>1/3
In order to progress with analytical techniques we make a g @)
special choice for a localize®,(x) which allows for a closed § m<1/ 0
expression for the integral of the coordinate map in &a). =
Below, we will demonstrate by an explicit numerical integra- l ® X
tion of the coordinate map for a generic Gaussian perturba- 0 t
tion Ry(x) that the following results are robust with respect to ® Xm(=1
the precise form of the perturbation. Thus we proceed with _ _ _
the choice FIG. 4. Model P: Boundaries between different sectors in the
t-x plane.
Ro(X) = Wroeo ] )
for the initial profile. This profile decays exponentially at R(t,X) = Ro(a(t,x))eMo1, (15

large |x| and has a amplitude of,. For the relevant limit of
ro<1l the width at half amplitude i$In 2. This form is
adapted to the integral in Eq47a) since the latter equation

where + refers to sectdt) and (Ill'), respectively. Together
with Eq. (13b) this result shows that the system has a simple
time evolution along the characteristic curves of constant

can be written as a(t,x). Using Egs.(13b) and (15 and 8=-t—x, we obtain
tla,B)=—a-B the explicit expression for the coordinate mapping in sector
I 1
B a,B’R(a:B,)dﬁ’ ( )
") 3TN R B)1-Re(— )~ Z(- B) 1 1 - gm ot
-a IplINRo(= B) | = Ro(= B') = Zo(- B E.Z(t’x) = a(t,X) =X+ o UodT
(10)
r
andRy(x) of Eq. (9) has the property that Wi m+—01/56ro+xmtm +(L1/8)em N |
1
aIn Ry(=x)] = Ry(=x) == Esgr(x). (11) (16)

The result for sectoflll) is obtained from the latter expres-
For the bed we will consider always a profile with a constantsion by the replacemert— - 8. Equationg(15) and(16) are
slope, our final result for the profiles in sectofs) and (Ill). In
B sector (Il) the characteristic curves,(t) which map to a

Zo(x) = mx, (12) constantw can be obtained again explicitly but we were un-
where due to our definition o the parametem measures able to invert them to obtaia(t,x). The characteristic curves
the excesslope relative to the critical angle. For these initial read
data the solution of Eq€4) in the curved coordinate frame

1
reads Xalt) = ———~{N(a)e™ "+ In[h(a)/ro] + ma =g}
R(a, ) = Wr g0 IAIo-mat], (133 an
Z(a, B) = ma. (13b  with the function
In order to integrate the equations for the coordinate map-  h(a) = W2/ (M) gomaWm-LoIm1/o)[ alotald]
ping, see Eq(7a), we have to divide the space-time into (19)

different sectors due to the sign function of HG1). De-
pending on the sign at and 8 we define the following three As in sectorgl) and(lll) the curves behave exponentially in
sectors(l): <0, 8>0; (Il): <0, B<0; and(lll): «>0, time with, however, more complicated amplitudes. The char-
B=0. The caser, >0 is mapped to negative times, and is acteristic curves are shown fog=0.1, §=5.0, and different
therefore not of interest. The boundary between sectbrs slopesm in Fig. 5.

and(lll) in the t-x plane can be obtained by integrating Eq.  With the characteristic curves at hand, the solutions for
(7@ with =0 andB<0. The boundaries are given by R(t,x) and Z(t,x), at a fixed time, are given in parametric
form in the x-R or x-Z plane by the curve$x,(t),R(«, 8

X (1) = =1, (143 =-x-1)), (X,(t),ma), respectively, withx as running param-
eter.
"
X (1) = ——— (&MLt 1), (14b)
m-1/6 2. Appearance of shocks

where the subscript indicates the adjacent sectors, see Fig. 4. Before we discuss the resulting profiles, we will study the
In sectors(l) and(lll) an explicit expression for the pro- possibility for the occurrence of shocks, i.e., discontinuities

files can be obtained. From the integrated version of(Eg.  of the profiles which develop at a finite time. Such kind of

one easily gets the result singularities are possible for nonlinear dynamics since adja-
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FIG. 5. Model P: Characteristic curves with constamt for a perturbationRy(x) of Eq. (9) with ry=0.1, §=5.0, and slopes
(8 m=-0.05,(b) m=0.05<1/6, (c) m=0.15<1/68, and(d) m=0.25>1/6. The shaded area indicates the region with shocks. The dashed
curves mark the boundaries between the different sectors, cf. Fig. 4.

cent characteristic curves can bend differently, leading everirg)] if ro>1) an exact expression can be obtained and is
for small differences in curvature at small times to intersect-given in Appendix B. On the other hand, for slopes close to
ing curves at larger times. Beyond the time at which thethe critical one the shock time diverges as
curves cross for the first time, there is a region where a .

unique solution no longer exists. Two such situations are ts~ (Mm=—mg) ™. (20
visualized for our model in Figs.(& and c). If character-  For our above choice of parametegsand 8 for Fig. 5 the
istic curves cross each other they form an envelope. Theyitical slope ism,=0.0828.

shock position is then determined by the cusp of the enve-

lope. While we leave the precise definition and the calcula- 3. Different avalanche dynamics

tion of the envelope to Appendix B, we discus here the cri-

terion for the existence of shocks in our mgdel. We are h'_:'ﬁu_rel > shO\r/]vs foqr_ possL)bIe S|tu|z|at|0rﬁa) Alslopehm
interested in not too large amplitudes Forry< 2, thereis WM 1S arger than criticai, but smaller than 14 so that

a simple condition for the formation of shocks. Then it canthe characteristic CUTVES saturate at Iarg_e t|mb)sa slope
be shown, see Appendix B, that shocks occur only if th smaller than the criticain,, (c) a slope which is larger than

slope of the profile of the resting grains is larger than th oth_the _crit?calmc and 1/5 so that the CUrVeS grow expo-
critical value nentially in time, andd) the case of a negative. The so-

lutions for the corresponding profiles &t,x) and Z(t,x)
V2-1 are shown in partga) of Figs. 6—8. Plotted are the two
me=——" (190 curvesZ(t,x)—mx (always corresponding to the lower cuyve
and Z(t,x)—-mx+R(t,x) so that the gap between the two
Thus for broad perturbations in the moving phase shocksurves represents the layer of moving grains. The maximum
occur already for small slopes. The exact timdg and po-  of the perturbation propagates downhill with a constant ve-
sition of the shock is in general difficult to calculate. For locity which is 1 in our rescaled units. For a negative slope
sufficiently largem (m>1/(2ryd) if ro<1 andm>1/[8(1  (corresponding to an actual slope smaller than the angle of
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. ) ) ) FIG. 7. Analog of Fig. 6 but fom=0.05 and time$=0, 5, 20,
FIG. 6. ModelP with b=0: Fixed time profile<(t,x) —-mxand 40. and 60.

R(t,x)+Z(t,x)—mx so that the gap between two corresponding
curves represents the thickness of the mobile phase.(®la for  logarithmic corrections at intermediate time scales. The ex-
Ro(x) of Eq. (9) and (b) for a GaussiarRy(x), both form=-0.05.  ponential time behavior found at the beginning of this sec-
The profiles are for times=0, 5, 10, 20, and 50. Here and in the tion for an initially homogeneous mobile phase is recovered
following plots of profiles the plotting intensity decreases with in- for m<<0 but is in contrast to the linear growth for positive
creasing time. m.

. . ) For both positive and negative initial slopes, the profile
repose all grains of the perturbation come finally to rest, Z(t,x) of the bed no longer evolves after the avalanche has
generating a bump on the initial bed profile which Co”e'pas'sed. The resulting profi,(x) becomes thus time inde-

fpé)é]%? :r?eth?artt)arsbee:ltnoenlggcr:]: Fs’l(ét’ S()er?erl:t%?l.m;elaarmepltl'-me S‘pendent for times larger than (@osition dependepttime
y pertu : yS EXp 1ally 9€ UMeScale. This asymptotic profile is only well defined if no shock

R(t,x=-t)=rq exp(ro+mt). If we define the downhill end of i .

the bump by the condition that the maximum of the pertur—occurs' In the latter case it is implicitly given by

bation inR(t,x) has decayed to some fractier<1 of the 1 | h(Z..(x)/m) B

initial amplitude, then the width of the bump scales like m-1/8 *ZX)=ro| =X (22)
In(e)/m for smallr, since the peak ifR(t,x) moves with a o

velocity of 1. Thus the final width of the deposited amount ofWhere the functiorn is given by Eq.(18). The latter expres-
grains is independent of the amplitude and width of the perSion is valid in sectogll) which is the relevant region for
turbation but only determined by the initial slope of the bed.large times, see Fig. 4. From this result one can obtain the
For positive slopesn the amplitudeR,,, of the perturbation ~SlopedZ.. at a given value of,

grows at large times linearly, ; e 1s { h'(Z..(x)/m)
= ML+ MO, @ SO iz o)

with a growth rate which is independent of the initial ampli- The behavior o, depends on the sign af. For negativem
tude ro. However, there is a broad transient behavior withthe deposited grains form a bump that was described above

o

-1
+ 1] . (23
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5 even diverges as the slopeapproaches the critical valum;
il (a)_ beyond which shocks occum,, ~ (m.—m)~L. It is important
to note that the layer of moving grains decays to zero at large
3 times at the uphill end of the avalanche, although the slope
A of the bed is steeper than before the avalanche started. This
< 7\ behavior can be easily understood from the property of Eq.
1 i \ (4) in which the exchange between the static and rolling

phase is proportional t& Of course, physically, there will
be a maximum angle for the stabili(gven forR=0) beyond
which the above predictions are irrelevant, and an extended

N\ ‘a\ f model'has to be consi_der_ed. .

-2 AN \\ f ‘An important quantity is the to_tal size of the avalanche.

N N/ Within our model, we define the siét) of an avalanche as
B “‘\\ /f the spatially integrated amount of mobile grains, i.e.,
-4 i ; S~ W//

-60 -40 -20 0 20 o
X I(t) = f R(t,x)dx. (25)
5 ; . .
(b) . .
4l - The integration can be performed for each sector separately
by a change of variables to the characteristic coordimate

3t i The contribution from sectailll ) can be neglected at larger
2 / : \ i times since the avalanche startsxatO to propagate to the

/ \ left (downhill), cf. Fig. 4. For negativen, the perturbation
\/ \ decays exponentially, and thus we obtain for the size

. S \\\yy ] ()= 2100 €0 (26)
\\ \
2 = ] For positivem we observe that the size of the avalanche
al | shows a quadratic increase in time,
-4 . . . .
-60 -40 -20 0 20 1+mé
1(t) =m?s t2, 27
X ®) L-mé (27

FIG. 8. Analog of Fig. 6 but fom=0.15 and time$=0, 10, 20,
40, and 60 for(b) only. In plot(a) a shock occurs at the uphill end at asymptotically large times. Interestingly, the growth of the
of the avalanchéshock timet,=41.71). Note that for the Gaussian avalanche depends only on its initial widéhbut not on the
Ro(x), plot (b), shocks are generated only for larger valuempéee  amplituder,. By comparison with the scaling of the ampli-
text. tude of the avalanche, cf. E@Q1), we observe that the width

of the avalanche must grow also linear in timemd/(1

and whose exact shape is given by EB2). Across this —MmIt.
bump, we find that the change of the slope as compared to So far we have studied mainly an initial perturbation
the initial slopem is always rather small. Far away from the which is particularly suited for obtaining analytical results.
bump (at large positive and negativg) one hash’/h In order to check the robustness of our results with respect to
=-1/6, and thusé,Z.=m remains, of course, unchanged the precise form oRy(x) we have chosen also a Gaussian
from the initial profile. For positivem the profile Z(t,x) Ro(X) =1y exp(—x2/ 8% together with the sam&q(x)=mx as
shows again a constant slope after the avalanche has passeefore. Contrarily to the previous case, the initial perturba-

i.e., Z,=myX, cf. Fig. 7. The asymptotic slope can be ob- tion has no cusp at=0. By a numerical computation of the
tained from the behavior of the functidnat large negative integral of Eq.(78 we obtained the profiles shown in parts
observed from the plots the characteristic features can be
2m 1 i i
m.=m| 1 +( r)( ) _ (24) regarded as robust. However, the moving layer, i.e., the gap
mé+1+y2/\m,—m ! /
to the faster decay of the Gaussian profile. Of course, the
Interestingly, the relative change of the slope is independentritical slopem, for shocks is no longer given by EL9).
the product of the initial slopen and the widthd of the  beyond am. which is increasedcompared to the exponen-
perturbation. Surprisingly, the expression in the squargially decaying profile of Eq(9) with the same width at half

arguments. We find (b) of Figs. 6-8, using,=0.1, =5, as before. As can be

between the upper and lower graph, decays more rapidly due
of the amplituder of the perturbation and depends only on We observe that for the Gaussi&j(x) shocks occur only
brackets in Eq(23) is larger than one for positiven, and  height, cf. Fig. 8.
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B. Strong stress anisotropy: Smallb R, m Ri
. 6B22+—(9BR1+ 2 _Rz :0,
1. Analytical result for general slopes m 1+Ry (1+R)O9x\1+Ry
So far we have assumed such a strong stress anisotropy (32b)

that there is no horizontal stresg,, i.e.,b=0 in the model of )

Eq. (4). In this section we will study the influence of a small Where the functions depend anand unless arguments are
04 On the avalanche dynamics we found in the previoughritten explicitly. The explicit expression far,x can be ob-
section. Although steady state simulations suggest a value &ined from the solution fob=0, leading to

b close to 121,22, it is interesting to study the regime of 5 )

smallb in order to compare to the BCRE model. The method PRV _J dg IoRe(a. B') 33
of characteristics can be applied of course to arbitrary values “ 1+Ry(@) J_, | [1+Ry(a,B)*

of b, yielding a system of equations which we could not

solve explicitly so that we had to resort to a perturbativeThe functionR, can be eliminated from Edq32b) by using
treatment. Thus we consider the terms proportionab io  Eq. (324, and the resulting linear ordinary differential equa-
Eq. (4) as small perturbations of tHe=0 solution. This can tion for Z, can be integrated easily. The result is

be done by the following ansatz:

B B
Z=2,+bZy, (283 Zy(a,B) = eXDU dB’gl(a,ﬁ’)]f dB'gz(a, B')
R:Rl+bR2, (28b) B'
whereZ, andR; denote the solution fado=0 of the previous xexp - f_a dB"gy(e B | (34)

section. Although one expects realistic valueshbasf order
unity, the perturbative calculation should allow for a qualita-with the functions
tive assessment of the effect of a finite horizontal stress. The

dynamics of the corrections are then described by the follow- _ mRy
ing linear coupled equations: 9u(a,p) =~ (1+Ry)%9,x’ (353
&tZZ =- Rl(&XZZ + t?le) - Rzale, (293)
__ R R, — mRy
3Ry = IRo + RodZy + Ru(6Z + Ry (29b) Gl B) == 1 R R (1 R )3 x
Since we consider corrections of linear ordebjrthe terms 1+R
containing derivatives of the profild®, andZ, have exactly Xy R+ In<—1>
the same form as those in E@) with b=0. Thus the char- 1+Ry(=B)
acteristic directiong,=-1, {_=R;, and characteristic curves a
remain unchanged for smdil In terms of the characteristic —f da'dgRy(a’,B)dx(a’,B) 1. (35b)
coordinatesy and 3, the corrections obey the equations -8
1+R; Ry _ This is our final result foZZ,, the profileR, can be computed
Iul2* 3 IaRe (Rlﬁle-'- §XR1>§“t_ 0, 803 4w from Eq.(32a. Using the explicit result foR; of Eq.

(8b) the multiple integrals can be performed easily numeri-
9pZy+ (RodyZy + RydRy) dgt = 0. (30h  cally. The resulting profiles are shown in Fig. 9 for the pa-
rameters g, 6, andm of Sec. Il A with b=0.5. For compari-
Here all functions have to be considered as depending on son the solution fob=0 are also shown as dashed curves. As
and g, in particulart(e, B) is given by Eq.(7a). In order to  can be seen from Fig.(8), for negativem the avalanche and
express the derivatives with respecttas functions ofr, 3, the bed profile are not much affected by the presence of

we usedy=dyad,+d,Bds together the relations horizontal stress-b. In contrast, for positive slopas there
1 1 is more visible effect of the horizontal stress. This effect
hB=-1, da= — (31)  grows with increasing time scale, cf. Figh9. As one could
1+Ry dox naively expect, horizontal stress has the tendency to shift the

with x(e, B) given by Eq.(7b). Using these relations and the P€ak in dynamics phase downhib the lefy. This shift will
solutions for b=0 of Eq. (8) with the initial condition b€ analyzed quantitatively below for the case-0 and by

Zo(a)=ma, Eq.(30) can be rewritten after integration over ~comparing the numerical results of Figs. 9 and 10 the shift
as appears to be independent mf For the bed profileZ(t,x)

the horizontal stress leaves the final slope after the avalanche
1+Ry > almost unchanged but it produces a steeper slop&tiyx)
1+Ry(-B) where the moving layeR(t,x) has maximal thickness. There
w is also a tendency for the bed profile to form a local dell at
_f da’ dgRy(a’,B)dX(a’,f) =0, (323 the peak of the avalanche, see Figb)9 This observation
-8 becomes especially pronounced foe0, see Fig. 10.

1+R,
Ry

Z,+ R, + In(
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0.1 . 0.12
(a)
0.1}
0.08 i
0.08}
0.06} :
0.06
0.04} E Gl
0.02} E 0.02} |
0
050 40 20
i i -60 -40 -20 0 20
X
0.8 - T T T T T _ .
(b) FIG. 10. ModelP at the angle of repos@n=0) for finite hori-
0.7r T zontal stressh=0.5: Profiles for a Gaussidry(x) at timest=0, 15,
0.6} 1 30, and 60. The dashed curves correspond to the absence of hori-
05l | zontal stressb=0, where the perturbatioR, propagates without
changing its shape.
04}
0.3+
RO(_ ﬁ) ’
02t Rola,B) = — - —ARo(= BIt(a. B) = Zy(, B)},
o | L+Ry-f) O
;) / M (36b)
01l \\\W | where the mapping betwednx and «, 8 has form=0 the
sl simple form
%% 40 @0 20 _ 10 o 10 20 t(a, B) f f__dp (373
h h h o " a, == —,1
X —a L+Ry(=8")
FIG. 9. ModelP with finite b=0.5: Profiles for a GaussidR(x)
and (a) m=-0.05 (for t=0, 5, 10, 20, and 45 (b) m=0.05 (for t X(a, B) =—t(ea, B) — B. (37b)

=0, 10, 20, 30, and 45 The dashed curves represent the corre- ) ) ]
sponding profiles forb=0 of Sec. IIIA and are shown for These equations provide a closed parametric form of the dy-

comparison. namics for a general initial perturbatid®y(x). The resulting
time evolution of a Gaussian perturbatioRy(x)=rg
o X exp(—x?/ 6%) is shown in Fig. 10. Compared to the absence
2. Explicit results at the angle of reposgn=0) of horizontal stressb=0, there are a number of interesting
, i features. The avalanche amplitude increases and the maxi-
It is obvious from the structure of Eq34), (358, and 1, is shifted downhill. The layer of static grains displays a
(35b) that major simplifications oceur if the initial bed profile bump at the initial position of the perturbation and a dell
is exactly at the angle of repose, i.en=0. Thus we can hich propagates downhill close to the maximum of the ava-
study easily the effect of a horizontal strefisite b) in this | 54che peak. At large times, E(78 leads toa=x which
situ.ation. Let us first summarize the result_s in the absence %gether withg=-x—t and Eq.(36) yields an explicit expres-
horizontal stresgb=0) whenm=0. The static grains stay for gjon for the profiles. For a small avalanche amplituglethe
all imes at the angle of repose so th&(t,x)=0, and the  sition of the peak follows=—t- /2 for a GaussiaRy(x).
initial perturbationRy(x) in the moving layer simply propa- The maximum of R(t,x) grows linearly with time, R,
gates downhillRy(t, ) =Ry(t+x). Thus the amount of grains b(r3/ &)t, while in the absence of horizontal strébs0) it
in both the bed and the moving layer are conserved. Thesmains constant. Notice that this linear growth was ob-
situation is different for finiteb. The layers of static and ggrved forb=0 only at angles larger than the repose angle
flowing_grains, res_p_ectively, have coupled dynamics with thqm>0)’ cf. Eq.(21). The form of the bed profil&(t,x) can
corrections from finite given by be directly obtained from Eq36a. There are two identical
contributions which are shifted relative to each othertby
The first contribution is approximately given HgRy(x)
1+Ry(- ,3)> 36  ~M1+Ry()]}. This term represents the bump at the start
1+Ry(a) /' position of the avalanche. The second contribution>hees-

Z( ) = Re() ~ Ro(~ ) + In(
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placed byx+t, corresponding to the dell traveling with the =1, (40)
avalanche downhill, cf. Fig. 10. Thus both features of the bed

profile are determined by the initial profile of the perturba-Since one of the characteristic directions is constant, these
tion in the moving layer. equations can be integrated in a way which is similar to the

procedure we used for model with a constant velocity profile
in Sec. Il A. From this calculation one finds easily that the

[=-R.

IV. LINEAR VELOCITY PROFILE (MODEL L) general solution of Eqg38) with b=0 reads
It has been argued that a constant velocity profile, as as- B dp’
sumed in the previous section, is only applicable to thin sur- t(a,B) :f 1+R@8)’ (419
face flow[33]. For a thicker layer of rolling grains, the ve- T @
locity should depend on the amount of mobile grains.
Experiments and simulations for steady deep systems sug- X(a,p) == B+ta,p), (41b

gest a linear profile for the average horizontal velocity

u(x,y)=vy of the flow. With this profile we hav@J:%yR,
W=3y?R?=3U2 and the conservation conditions of Eq)
and(2) yield the model

4Z=-aZ-ba,R, (38a)

#R=RA,R+ 3Z +biR. (38b)

Here all lengths are divided ky/ v2, and time is divided by
v. Again, Z is replaced byZ+ux. The model contains after
this rescaling only one free parametbr,lt is rather impor-
tant to note that the latter model is valid only as longRas
remains positive since we obtained it from E@) after di-
vision by R. Thus the actual solution of E¢38) is given by
the maximum ofR=0 and the formal solution foR of Egs.
(389 and (38b). In this section we will study the conse-
quences of & dependent linear velocity profile both in the
absencdb=0) and presencéb # 0) of horizontal stress. We
note that for an initially uniform amount of rolling grains
Ry(x)=p and a sand bed with constant slapgx) =mx the
solution to EQs.(38) is rather simple. As opposed to the
exponential growth for modéP, the thickness of the mobile
layer increases here only linearly in tinf&(t,x)= ¢ +mtand
Z(t,x)=m(x—t) decreases accordingly. As for modelthis
solution is independent dd.

A. Infinite stress anisotropy (b=0)
1. Analytical solution

In the limit of b=0 Eqgs.(383a and(38b) are decoupled.
Such set of equations has been studied by de Gegtradsto

describe a thick flow of granular matter in a bounded geom

etry [33]. Here we consider this simple model in anre-
stricted geometry but we allow for general initial profiles
Ry(x) and Zy(x). Following again the approach outlined in
Appendix A, we obtain the characteristic equations

I X=L.0,t=0, (393
dpx— L aat=0, (39b)
~ 9,2+ (L, - 1)d,R=0, (399
— g2+ (L - DagR=0, (39d)

with the characteristic directions given in the caséa by

R(a, B) = = 1 +\[Ro(a) + 112 + 2 Zy(B) - Zo(- a)],
(410

Z(a,p)=Zo(= B). (41d)

Studying the configurations we studied in Sec. Ill A for
model P with a constant velocity profile, we chooZg(x)
=mx so that the integral in Eq418 can be computed ex-
plicitly. One obtains, using Eq410:

1
t(a, B) = n—q{\*"[Ro(a) +1]%+ 2m(a + B) — Ro(@) - 1}

(42)

1
~[R() - Rol@].

Since in the limitb=0 Egq. (389 acquires a simple linear
form, we have obviously the result

Z(t,x) = Zo(x—t) =m(x - t). (43)
At sufficiently large times one has~x+mt/2, and thus
Eq. (42) shows that the amount of rolling grains is given by

R(t,x) = Ry(X) + mt with X=x+ gtz- (44)

2. Physical discussion

From the above result, the shape of the perturbation at a
given large time would be the same for all initial slopas
From this result, the maximum of the mobile layRft,x)
travels with a velocityvna=ro+mt/2 which, form>0, in-
creases linear in time, i.e., the perturbation feetooastant
acceleration This has to be compared to thenstant veloc-
ity we found for the model with a constant velocity profile,
see Sec. Il A. However, for negative, as explained above,
the actual solution is obtained by settiijt,x) to zero in
regions where it would be negative otherwise. At the time at
which R(t,x) becomes zero, the profi&t,x) is frozen at its
present height. Due to this construction the final solution for
Z(t,x) will deviate from the simple form of Eq43). For
positive m the profile R(t,x) as obtained from Eq(42) is
always non-negative. But there is the possibility that shocks
actually prevent the system to reach the asymptotic time re-
sult of Eq.(44). In fact, independent of the initial parameters
of Ry and m, a shockalwaysoccurs after a finite time,,
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0.7f positive and negativen. Plotted are the profile&(t,x)—mx
@ and Z(t,x)—-mx+R(t,x) so that again the gap between the
061 profiles corresponds to the layer of rolling grains. For nega-
tive m all moving grains have come to rest at the titve
0.5¢ —ro/m which is smaller than the shock time scaldor the
parameters used here. For positivethere is a uniform in-
0.4¢ crease in the thickness of the layer of rolling grains, see Fig.
11(b). This increase is linear in timeymt, and is unrelated
0.31 to the amplitude of the local perturbatidty(x). This appar-
ently unphysical result can be understood from the structure
0.2¢ of Eqg. (38h). Even for a strictly localized initialR,(x) which
is zero outside a finite interval, there would be an increase
B ~(82)t (for a constant slopeat all positionsx, not only
i there whereRy(x) is nonzero. But since we divided the origi-
D = P = o e nal equations bR to_obtain Eq.(38), R=0is a Frivial sqlu-
X tion. The latter solution should be matched with the firkte
solution at the front of the avalanche. However, by defini-
tion, at the front the rolling layer becomes very thin, and a
06l ® /]< strictly linear velocity profile is certainly an oversimplifica-
tion. Thus, with the model of this section, the matching of
04} the two solutions at the front is not justified. Instead, the
dynamical equations should be refined as to describe the
02} | physical processes close to an avalanche front and the thin-
[ to-thick flow crossovetfor example, along the lines of Refs.
0 | — [33,37)). This we leave to a future work.
IR
“02y ‘L B. Strong stress anisotropy: Smallb
-04} 1. Analytical results
Now we study the influence of finite horizontal stress with
-06| L ) >
a finite but smalb. An important consequence of a finkids
50 10 o o = that now EQs.(38) become coupled by the stress term. In

X order to obtain the dynamic response to a local perturbation
we perturb about th&=0 solution of the previous section.
FIG. 11. Model £ with b=0: Profiles for a Gaussian profile Following the analysis of Sec. Ill B, we make the ansatz
Ry(x) with ry=0.7, §=5.0, and slopéa) m=-0.1 (b) m=0.1, both

for timest=0, 3, and 7. The shock time ts= \s“mélro:8.32. For Z=27,+bZ,, (468
negativem the perturbation has stopped at the titae-ro/m=7.0,
i.e., the profile shown for the latter time is the final bed profile. Note R=R; +bR,, (46b)

that for positivem the thickness of the moving layer shows an . _ )
overall linear increase proportional tot since for a Gaussian pro- whereZ, andR, denote the solution fdo=0 of the previous

file, Ry(x) is in fact small butfinite everywhere. For clarity, we section, cf. Eqs(410 and(41d). By expansion of Eq38)

indicated explicitly the thicknes® of the mobile layer at=3. It? b we obtain the dynamics of the contributions from finite
unless the solutiorR(t,x) of Eq. (44) becomes formally OZy=— dZy— Ry, (473
negative(for negativem) before the shock can appear. The
shock time is given by the general expression 4Ry = (1 +Ry) 4Ry + Ria,Ry + 0,25 (47b)
t = 1 (45) To this coupled system of equations we can again apply the
* maxRj(x)’ method of characteristic curves. The resulting characteristic
equations for the corrections to the profiles are
Remember that for the plug flo® model (see Sec. I, a
shock appears only for slopem which are larger than a ol + Rt =0, (489
positive critical slope. For the model discussed here, shocks
can even occur at negative slopas IpZy+ (L +R)dgRy — [(1 +R)Ry + RyJ3,Ry 9t = 0,

In the following, we will consider again a Gaussian per- (48b)
turbation in the layer of rolling grains,Ry(x)=rq
xexp(—-x?/ 8%). Then the shock time ig=\e/25/r,. Figure where the characteristic directions are the same as in the
11 shows the time evolution of this perturbation for bothunperturbed case, =1, {_=-R;. Again all functions in the
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above equations have to be regarded as depending, Bn B B
Derivatives with respect ta can be rewritten by the use of Ro(a, B) = ex f dg'g.(e,B') f dg'gx(e,B')
the relations e e

B/
Xexp{— f dﬂ”gl(a,ﬂ”)} , (51
Ri \? 9Py — Ry(@) -
K== ( 1 +1R1> p A= m(ll +R) (49 \yhere the functions, andg, are now given by
m
0i(a,B) = - , (523
Using the latter relations, Eq48a can be integrated with ' (1+Ry)[Ro(a) + M/Ry(a) = Ry]
respect tow. The result is 1
Oo(a,B) = 1+—R1{R19(01,,3) —dgIn[1+Ry(-B)]
a Ré(a/) 5 .
Zy(a,B) = —f da/' ————. (50 J , Ry(a’)
B 1+Ry(a',B) +m ) da —[1 R BT | (52b)

_ _ _ o . ~ Most of the integrals in Eq(51) can be obtained in closed
By inserting this solution into Eq48b) one obtains an ordi- form. After a tedious calculation the final result can be ex-
nary differential equatiofwith respect tgs) for Ry(a,8). In pressed in terms of single integrals, that we give for

formal analogy to Eq(34) its solution can be written as completeness:
|
B} 1 Ro(e) { ((1 +R)[L +Ro(~ ﬁ)])]
R,(a,B) = R, —Ry(a) — |
AP R - R11R5<a>/m{ m | R T INTT Rya

. F 4 R BHL*[Ro(@) ~ Ry, BIRe(@)/m} _ Refe) [ Rila)

[1+Ry(er, 8)][L +Ro(= B)] m ), " 1+R(,p)
_ ’ “ R(I)(C!/)da/ 1+ Rl(aiﬁ) _ 1+ Rl(al_ a,)
R+ LRI | T () + 1P~ [Ry(a’ ) + 1]2{ L+R(@ f)  L+Roa) ” 9

Equations (50) and (53) provide the final result for the along the symmetry axis of a triangular shaped avalanche
changes in the profiles due to a finite horizontal stress. Thenoving on a static layer of limited thickneg$6]. For posi-
solution is valid forgeneralinitial profiles Ry(x). In Fig. 12  tive m there is, in addition to the homogeneous and linear
we have plotted this solution for a Gaussian perturbatiordlecrease oZ, a net transport of grains of the sand bed from
with the same parameters as in the previous section, cf. Fighe downhill front to the uphill end.

11.
V. DISCUSSION AND CONCLUSION

2. Physical discussion In this paper, we have studied two sets of St. Venant equa-

The main difference coming from finite is the genera- tions for the modeling of granular avalanches on an erodible
tion of a peak at the downhill front of the avalanche, both forbed. The models differ in the choice of the velocity profile
positive and negative slop@s From the model of Eqg38)  within the flowing layer—either a plug flo/P) or a profile
one observes that the term proportionabts controlled by  with a constant velocity gradier(tZ)—which give rise to
the slope of the moving layer. Since this slope becomedlifferent nonlinearities. These models can be solved analyti-
steeper at the downbhill front with evolving time, there is ancally by the method of characteristics, at least for sufficiently
increasing thickness of the mobile layer close to the frontlarge stress anisotropy, and we have focused our attention on
From a physical point of view this amplification can be un-the situation where a uniform bed slope is initially disturbed
derstood from the effect of the horizontal stress which in-by a localized amount of rolling grains. We were able to
creases witlR. Thus at the downhill front there is a net force compute the space and time evolution of the avalanche
which pushes the material towards the front and induces awhich either dies or grows, depending on whether the initial
extra growth of the rolling layer. As demonstrated by theslope is below or above the angle of repose.
inset of Fig. 11 our result is in qualitative agreement with ~ Such unsteady and nonuniform flows are very demanding
measurements of the thickness of the mobile layer of grainfor the models as the description of fronts and the generation
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14] Our analysis shows that these models predict several in-
teresting qualitative features of granular avalanches, that can
1ol be compared with experiments. However, in the present form
they also certainly have a number of shortcomings. The plug
1l flow assumption, for example, is not tenable for a rolling
layer thickness which starts to be of the order of several
08l grain diameters, as particles on the top of such a layer would
not feel the damping due to the friction on the bed. On the
nsl other hand, the linear velocity hypothesis yields a vanishing
' velocity U— 0 when the thickness of the mobile layBr
ot — 0, which forbids any front to move. However, shockless
' and well defined propagative fronts are observed experimen-
sl tally in steady[11] or unstead){38] situations. Our model
' also does not correctly account for slope hysteresis which
G should differentiate between a starting and a stopping angle,
g 1o s o 5 T i bstart and_¢Stop rgspectlvely. In f.actl, the region betweég,, _

X and ¢S precisely that of major interest as bed slopes with
an angle¢> ¢, are stable but can generate growing ava-
lanches when disturbed by a local amount of rolling grains.

(®) 24 { “Viomi, A Because the nonlinear terms in modehre all proportional
25 221 S ,xyi [ to R, spontaneous avalanché®r R=0) can never occur
5 >0 fi whatever the value of the initial slope. This would corre-
8 ra l e spond to the maximal value of/2 for ¢, This, however,
15 ij ‘lﬂf - implies that modelP can be applied to the experimentally
N M@Nf e important regime of slopes which are only slightly larger
1 .. , il oo than ¢, and sufficiently small compared g, On the
N 20 #100: g feui, § other hand, the uniformly growing solution f&in model £
0.5 //7< can be interpreted as evidence that both anglgs and ¢gop,
j are identical so that beyond that angle avalanches occur even
0 EE— at R=0 (unstable slope
—— g = To include the above mentioned effects in the presented
05 models, new directions have to be proposed. First, one can
modify the dynamical equations itself while keeping their

15 -10 -5 0 5 10 15 general structurghyperbolic first order differential equa-

X tions) with its analytic properties being tractable by the
method of characteristics. Second, additional physical input
could be used to either study the propagation of shocks be-
yond the shock time scale or one could implement boundary

and 7. For comparison, the corresponding profiles iei0 are conditions on, e.g., the slope of the profiles to describe the

shown as dashed curves. Notice that the peak appears rather Sh%{pnamics close to the avalanche front. To be more specific
due to the relative elongation of the vertical axis. Inset: For quali- y ) P !

tative comparison, experimental results as given by Fig. 23 of RefV€ f_(ljlscuzshtwo pOI_ntsﬁOf particular interest. The velocity
[16] for the surface velocity and the local heighth of the mobile profile and hysteresis effects.

layer which corresponds & in our notation. A linear relation be- As proposed theoretically and demonstrated by experi-
tweenv andR is observed, and the shapeRfesembles that of our MenNts, ark dependence of the flow velocity must be kept to
analytical result(The direction of flow is inverted in the experi- allow for thick avalanches. The commonly used strictly lin-
ment compared to our modgl. ear velocity profile with the rheological ansatgx,y)=yy
(constant shear ratéeads to problems at the avalanche front
since the depth averaged velocifyshould stay finite and of
of shocks must be addressed. For the case of a plug flow wite order ofygd whenR— 0. A possibility is to lety diverge
found that shocks occur at the uphill end of the avalanchén this limit. This would correspond to a crossover from
above a positive critical valuen, of the slope. Below this model£ to modelP below a certain small value f& of the
value, the asymptotic large time behavior can be computedrder of a grain diametedt (see Ref[33]). The correspond-
and we found that the amplitude and width of the avalanchéng matching of characteristic curves is technically involved
grow linearly in time ifm>0, whereas for negativen the  and, moreover, such a treatment would not provide an under-
initial perturbation decays exponentially and the width of thestanding of the physical mechanism of velocity selection. In
deposited bump of grains scales likem fFor a linear veloc-  fact, close photos of the foot of the avalanche fronts reported
ity profile, shocks occur for all slopes at a finite time that canin Ref. [11] show a small gaslike region where grains are
be computed explicitly and is related to the shape of thesjected from the dense flow. This means that this zone is, in
initial distribution of rolling grains. By contrast to the previ- a sense, outside of the present modeling framework and thus
ous case, shocks are located at the front of the avalanche.could allow for a discontinuity inR, for example, or for

FIG. 12. Model£ with finite b=0.5 for the same parameters as
in Fig. 11. The plots are for timgg) t=0, 3, and 6, andb) t=0, 3,

031305-14



DYNAMICS OF GRANULAR AVALANCHES CAUSED BY... PHYSICAL REVIEW E 71, 031305(2009

imposing an extra constraint on the profiR@ndZ or their For hyperbolic systems the notion of characteristic curves
derivatives—e.g., a fixed slope of the free surface as obis the central concept. Before introducing the general theory,
served on propagative fronts. Another more fundamental apye would like to motivate the introduction of characteristic
proach would be to consider the veloclty as an indepen- curves or coordinates. This concept is particularly adapted to
dent dynamical field whicla priori is not related t(R by a  the case where the number of equations equals the number of
fixed velocity profile. Such kind of description has been ap-independent variables. In the present case of two equations,
plied to granular flow on éixedplane[12] so thatZ is not a  the objective of the method of characteristics is to introduce
dynamical quantity2]. However, for the case of avalanches instead of(t,x) a new coordinate framéx, 8) so that along

on an erodible bed considered in this paper, the coupling othe two families of curves of constant coordinatesnd 8

the dynamics of the flowing layer to the profilBsandR via  the partial differential equations reducedalinary differen-

an additional equation remains an open problem. tial equations with respect te and 8.

Another feature of sand piles that should be included in Let us demonstrate the method explicitly for the simple
the St. Venant models discussed here is the hysteresis ofse of one linear partial differential equation for a function
avalanche dynamics as reflected by the existence of two critif(t,x) of the form
cal angles. Experimentally it is observed that, at least for a
fixed profile Z, the critical angles are actually functions of a(t,x)dxf + b(t,x)af +c(t,x)f = 0. (A1)
the thicknessR of the mobile layei6,12]. Since the friction  The initial value will be prescribed at zero tim&t=0,x)
coefficient, is given by the tangent of the actual angle of _¢ ) First, we have to define the characteristic curves

the pile, a nonconstant friction coefficientR) is expected. [t(a), x(a)] where a is a variable parametrizing a given
Indeed, at the scale of a single grain, the starting angle dec

urve. These curves are specified in terms of their local tan-
pends on the depth of “traps” due to the roughness of th ent vectorgvelocitied
static bed[25]. Therefore one should expect an increase '
value of u below a typical thicknesR4, (of the order of a dx _ dt
grain diametex. This increased value determines then the a{—a(t,x), E{—b(t,x). (A2)
staring anglepg,: While the i at largeR corresponds to the _ _ . . _
stopping angleps,, A sufficiently large value of the friction Integrating this equation yields a whole family of character-
coefficient at smallR would lead, for the points wher® istic curves which is parametrized by the starting positign
<Ry 10 a “freezing” of the sand bed profiat its current ~ of the curves at=0 so thaix(a=0) =X, andt(a=0)=0. This
value. ensures that from each position of the lire0 exactly one
Both modifications, constraints on the profiles at the avacharacteristic curve originates, providing the trajectory along
lanche front and a friction functiop(R), do not change the which the initial datafy(x) can be propagated in time. In
general structure of the dynamical equations studied in therder to see why the definition of E4A2) is useful we
present paper. Thus the method of characteristics and ogompute the change of along the characteristic curves,
predictions should prove useful for a better understandingielding
and modeling of nonstationary granular flow. df
d—+c(t,x)f =0. (A3)
ACKNOWLEDGMENTS “
) ) ) ) The crucial observation is that the latter equation is just an
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HétérogenesUMR 7603, parameterse and x, are computed for a given coordinate

(t,x) to get the solutionf(t,x) in the original coordinate
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APPENDIX A: METHOD OF CHARACTERISTIC CURVES Having outlined the general idea behind the method of
characteristics, we can go ahead and turn to the case of two

S sl?ert:fosfecgft?ala d?f;:;];gtcigrg?tﬁgttg? dgfr;?hrgl é?gglri)é fornonIinear hyperbolic equations for two functions. We will
y P P consider a general system of the form

type is presented. Due to the relevance to granular flow prob-

lems we will concentrate on nonlinear systems consisting of Ly =A0Z+B4Z+Ci9R+Dd,R+E; =0, (Ada)

two equations for two functions of two independent vari-

ables. In the present context of this paper, the functionRare L, = ApdZ + Byd,Z + C,dR+ DR+ E, =0 (Adb)
X X

and Z and the independent variables correspond to space

and timet. For such systems a complete mathematical theorjor the functionsR(t,x) and Z(t,x), where the coefficients

is available[17]. Our presentation will follow closely the A;,A,,By, ..., are known functions of,t,R, andZ. The type
latter reference. of this system depends on the coefficients. For the hyperbolic
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case in which we are interested here one needsattab? dz drR dx dz dr dx
<0 with the functions M|{Bi—+Di——+E—|+)\; Bzar +Dy —+Ey—

do do do do do
a=[AC], 2b=[A,D]+[B,C], c=[B,D], (A5) =0. (A8d)
where[X, Y]=X; Y= XoY1. This system is obviously overdetermined. Thus, in order to

The goal is again to reduce the above system to a systefhye a nontrivial solution, the determinant of every pair of
o_f ordinary dn‘_ferentlal equations with respect to new coor-rows in the matrix of coefficients of, and\, has to vanish.
dinatesa, 8. Since we have now to deal with two unknown The rejations following from this conditions are callelar-
functionsR(t,x) andZ(t,x) we start by searching for a linear geteristic relations
combinationL=\;L,+X,L, of the differential operators in In particular, from the first two Eq$A8a) and(A8b), one
Eqg. (A4) so that the derivatives d&® and those oZ combine  gptains the condition
to derivatives in the same direction. These directions will be
the velocity vectors of the characteristic curves and thus de- dx\? dt dx dt \?
termine the new coordinate frame. Let us represent an arbi- a( ) —2b——+ C(Ir) 0
trary curve in thex-t plane by[t(o), x(o)] with o denoting

the running parameter along the curve—note #étnally  \yith the coefficients given by EA5). From this condition

will play the role ofa or 8. Then the condition thatib both it hecomes clear why the method of characteristics applies to

functionsR and Z are differentiated in the tangential direc- hyperbolic systems. For those systems we have, as men-

tion of this curve reads tioned aboveac-b?<0, and Eq.(A9) has two different so-

lutions and thus two different characteristic directions

dvdo _ MAstAoAy _ MGyt )\ZCZ_ (A6)  (dx/de, dt/do) through each point. In the following we as-

d¥do  NBy+N;B, NDj+A;D, sume, without any restrictions, thatt0 so thatdt/do# 0

and we can introduce the slope

(A9)

Next, we consider the change of the functiéhandZ along

the curvelt(o),x(o)]. It is given by dx/de

= dtdo (A10)

dz ¢
do = g Zdtdo + 4 ZdXdo
The two different real solutions aff?—2b¢+c=0 for these
and analogous foR. Multiplying L with either dx/do or  so-called characteristic directions will be denoted{byand
dt/do and using the conditions of EGA6) one gets {_, respectively. These characteristic directions are in general
dt iz R functions oft,x,R, and Z. Two one-parameter families of
L. uz aR characteristic curves follow from the directions by integra-
crL = (MaAL+ o) o HaCy MCZ)dcr tion of the ordinary differential equationsdx/dt
dt =/.(x,t1,R,Z) anddx/dt=¢_(x,t,R,Z). In the following we
+(\Eqp + M Ep)—, (A7a)  will denote the families of curves b§, andC_. These two
do families of curves define a curved coordinate net if the
curves are represented @&, t) =const and3(x,t) =const for
family C_ and C,, respectively. The functiong(x,t) and
B(x,t) are calledcharacteristic parametersThe coordinates
q (t,x) corresponding to a given paiw, 8) can be obtained as
+(\Ey + )\zEz)—X- (A7p)  follows. Consider a curvé given by[x(s), t(s)] which has
do nowhere a characteristic direction as tangential vector. In
practice,Z will be usually the linete=0 where the initial data

dx dz dR
—L=(\By+\;By)—— + (\Dy + \;Dp)—
do do do

If the functionsR and Z satisfy the system of differential . " L ,
Egs. (A4) we havel.=0, and we obtain the following four are defined. In addition boundary conditions, e.g., a fixed

homogeneous linear equations for the coefficiantand\, flux at a given position, can be specified by a curve with
which result from Eq(A6) and Eq.(A7): =const. Through the two points « ands= on the curveZl

one follows the characteristic curve of famiy_ and C,,

dx dt dx dt respectively, up to the point where the two curves intersect.
)\1<A1£_ - Bl&_) + Kz(l“\zar - Bzar) =0, (ABa)  The new coordinates of this intersection painix) are then
(a,B). The characteristic parametesisand 8 can now re-
place the parameter for the curves of familyC, and C_,

)\1<Cld_x - Dlﬂ) + )\2<C2% - D2ﬂ> =0, (Agb)  respectively, so that one hat/da={.dt/da and dx/dg
do do do do ={_dt/dg.
Next, we have to find equations which determine the evo-
dz dr dt dz dr dt lution of the functionsR and Z along the characteristic
M(Ald— +C—+ El_) + >\2<A2— +Cp —+ Ez_> curves. This can be done by eliminatingand\, from Egs.
o do do do do do

(A8a) and (A8c). Using dx/do={dt/do, where ¢ denotes
=0, (A8c) either, or {_ ando is eithera or 3, one obtains
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dz dr dt APPENDIX B: DERIVATION OF THE SHOCK
T’ (@al-9--+(K{-H)—=0, (All) CONDITION
o do do
with the coefficients In this appendix we first review the mechanism for the
generation of shocks and their mathematical definition. Then
T=[AB], S=[B,C], K=[AE], H=[BE]. we provide for mode the details of the calculations for the

(A12)  shock existence criterion and the time and position of the
shock. For modell shocks are always generated, and we
derive the simple result of Eq45) for the shock time. In
CAppendix A we have assumed that the characteristic curves
of one family(eitherC, or C_) do not intersect. Only if this

is true is there a well defined mapping between the original
coordinates(t,x) and the characteristic parametdks, 8).
However, depending on the initial data at zero time, it is
I X=Ldt=0, (A13a)  Possible that characteristics of the same family intersect at a
finite time. Beyond this shock time the system of partial
differential equations fails to have a single valued solution
but only multivalued solutions or even no solution at all
exists at later times. The points of intersection of character-
istic curves are enclosed by an envelope, cf. Fig. 5. The
earliest time where a shock appears is the position of the
TopgZ+(al-— SR+ (KL —H)dgt=0. (A13d)  cusp of this envelope. Technically, the envelope is defined by
the condition that for every position on the envelope there
exists a characteristic curve that touches the envelope at the
position so that both curves have the same tangential direc-
tion. If we represent the envelope @g a), x.(«)) wherea is
used as the parameter changing along the envelope then the
conditions read

If we apply the latter equation to the curves@fandC_ and
combine them with the equations for the characteristi
curves, we finally obtain the following foucharacteristic
equationswhich are differential equations for the four func-
tions x(a, B), t(a,B), R(a,B), andZ(«,B) and replace the
original system of Eq(A4),

&BX— g_&ﬁt: 0, (Al3b)

To,Z+(al, - 9d,R+ (KL —H)a,t=0, (A130)

All the coefficients in this system are known functions of

x,t,R, and Z. It can be shown that every solution of this

characteristic system satisfies the original system of &4)

provided that d,tdgX—dgtd X=({_—{,)d,tdgt is nonzero.

With the derivation of Eq(A13) we reached our initial ob-

jective to reduce the partial differential equations to a form

which resembles that of ordinary differential equations along

certain curves. This can be seen from the fact that each equa- Xol(te( @) =Xe@),  AXe(Biz (= O, (B1)

tion contains derivatives with respect to only one of the co- €

ordinatesa and 8. Moreover, the system has the convenient

property that the coefficients do not depend on the indepenwherex,(t) is the trajectory of the characteristic curve along

dent variablesy and . which « is constant. The second condition follows from the
Now we are in the position to outline the strategy for requirement that the tangent vectdr, 9;x,(t)) of the curve

solving an initial value problem for the system of E44). X,(t) is parallel to the tanger{tity(a)/da, dx.(«)/da) of the

Let us assume that the initial values of the functi®&andZ  envelope. To see this, one takes the derivative of the first

are given on the lineé=0 by Ry(X) and Zy(x), and that this  condition of Eq.(B1) with respect toa so that one obtains
line has no characteristic directions. This line corresponds

then to the curve& introduced above. We may consider this

curve as the image of the characteristic parameters obeying dxe(@) _ dtg(a)
the relationa+B=0. Then we have to solve the system of (1) da * 9o Dtt(a) - (B2)
Eqg. (A13) with the initial conditions
tla,—@) =0, X(a,-a)=a, R(a,—a)=Rya), The collinearity of the two tangent vectors requires then the

last term on the right hand side of E®2) to vanish. Notice
that in modelP the characteristic curves along whighis
Due to the particular simple structure of the system of Eqconstant are straight lines, and thus they can never produce a
(A13), this problem can be treated as completely as the inishock.

tial value problem for ordinary differential equations. It is  In the following we focus on the initial profilBy(x) given

this formulation of the nonlinear hyperbolic flow problem by Eg. (9) which allows for an explicit calculation of the
which we used throughout the paper to solve the partial difenvelope and the condition for shocks. For this profile it is
ferential equations exactly. Finally, we note that this methoduseful to consider three different sectors in theplane, see
can be generalized to an arbitrary numlmeof equations. Fig. 4. Using the above conditions, one obtains for the enve-
Then the system will hava characteristic directiong, and  lope in sector(ll) the result

correspondinglyn different families of characteristic curves.

Z(a,~— @) =Zy(a). (A14)

However, then resulting characteristic parameters can no

i i i 1 m 1
longer be interpreted as a new coordinate frame since there t(a) = Inl = _ (B33
are only the two coordinatesandx. © m-1/6 h'(a) h(e) |’
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{h(a)e(m‘l/‘s)‘e(“)ﬂn(@)+ma—ro], limx,(t) = o {1——a——ln<—>]. (B9)

ro t—o 1/5_ m rO I’O

1
Xe() m-1/6
(B3b) Sinceh(a) is @ monotonously decreasing function for nega-
tive «, the expression in the square brackets is monotonously
increasing ina. Thus the characteristics retain the original
order for all times, i.e., they never intersect. The situation is
More complicated for positiven. Let us assume that there
exists a finite valuen. so that only form>m, shocks are
produced. Then, one expects thatrat m, the timet, for the
Mot _ 1 shock appearance tends to infinity in order to have no shocks
X (t) =a+ Ry(a) —————. (B4)  at finite times form<m,. Since the shock positiofis, xs) is
m+1/6 the cusp of the envelope, we have to analyze the large time
behavior of the envelope of E¢B3). We start with the as-
sumption that the critical value,<1/4, and, in fact, at the
end we will confirm this assumption. Fon<1/6§ one has
R)(a) e the asymptotic behaviot,(e) ~—«, and thus we consider
=1 +m[e -1]. (B5) large negative values far in the following. The shock time
is given by the minimal time of the envelopg=t.(a,,) with

Form+1/5>0, the term added to one on the right hand side®m the parameter at the minimum, i.elt(a)/da=0 for «

is positive fort>0 sinceR}(«) >0 for negativea in sector ~=am Then close to the critical slop®, we expect thatxy,
(). In the opposite case+1/8<0, the same argument ap- — ~>- For large negativer, the functionh(a) of Eq. (18)
plies since the expression in the square brackets is now neg@as the asymptotic form

tive for t>0. This shows that the right hand side is always — 1y vl o(1-v)(L+al )

larger than 1, and the condition is never fulfilled. In sector hle) = rg™(= ma)"e® (B10)
() we use a different argument to show that @meconst  with v=(2/6)/(m+1/6). Using this expansion in E¢B3)
characteristics, which originate from positixeat t=0, form  the conditiondt,(«)/da=0 becomes at asymptotically large
an envelope. From the characteristics in se@iby, the con-  « independent ofr and assumes the simple form

ditions of Eq.(B1) are formally fulfilled by the expression I

where the functiorh(«) is given by Eq.(18). In sectors(l)
and (ll1) the conditions of Eq(B1) cannot be satisfied and
thus the characteristics in these sectors never form an e
velop. This can be seen as follows. In sedigy the charac-
teristics along whichy is constant are given by

Using this expression, the second condition of BJl) be-
comes

= . B11
m-1/6 m S (B11)
te(a) = Inf1-— , (B6a)
m-1/6 Ro(a) Since we assumed that the shock titge: o, this condition
has to be regarded as an equation for the critical slope
Ro(c) =m.. Sincev depends omm the equation is quadratic im,
Xel@) = a - R(a) (B6b)  and it has one negative solution which we have to discard
and the other solution gives the critical slope beyond which
for the envelope. However, it remains to be checked that thi§hocks occur,
curve is indeed located in sect@tl ), i.e., if its coordinates \5 -1
are larger than the boundary between sedtioyand(lll ), cf. me = . (B12
Eq. (14b), which yields g
This is the result given in Eq19). The behavior of, close
Xo( @) > Mo [emLate(@) _ 1], (B7) tp m=m, can be obtained by (;omputing .the leading correc-
m-1/6 tion to the (constant asymptotic expression fait,(a)/da.

We find a correction~1/« which in turn yields the leading

Using the definition ofRy(x), cf. Eqg. (9), and the relation qar of a,, close tom,

Ry(a@)=—(1/8)Ry(a)/[1+Ry(a)], the latter condition turns

out to be equivalent to - _i_ 1 (B13)
vam-mg’
| Ro(@) lo . . . .
nf——|+ —( ) <1. (B8) Since at large negative the time coordinate of the envelope
fo Rola behaves ak(«@) ~ -« andts=t.(«a,,), we obtain the following

SinceRy(@) /o<1 for a#0, this condition is in fact never Power law for the shock time close to criticality:
fulfilled which proves the absence of shocks in se¢tiy.

Knowing that shocks, i.e., the cusp of the envelope, can ts~ pmp— (B14)
occur only in sectofll) we can try to obtain the condition Me
for shock generation and the time and position of the shockas given by Eq(20). The precise timég and positionxg of
First consider a negative slope<0. Then the characteris- the shock is given fom sufficiently close tom; by the en-
tics in sector(ll) saturate at large times, velope of Eq.(B3) at a=«,, of Eq. (B13). At larger m the
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coordinategt,,xs) are difficult to compute. However, at suf- Finally, we study the generation of shocks for model
ficiently largem closed formulas can be obtained. The reasoriWe do this by using an approach which is more adapted to
for this is that form larger than some threshold the minimum the special structure of the solution of this model. We do not
of ty(a) is always ata,,=0, i.e., the shock is located on the use directly the definition of EqB1) but look for a discon-
boundary between sectofd) and (Il ). To see this, we ex- tinuity in the profileR(t,x) as a function o. If there is a
pand the envelope of E¢B3) now around small negative.  jump in R(t,x) at some positiorx then a shock is generated

This gives and the earliest time where this happens if the shock time
. 1 | (m&(l rg) - 1) We start from Eq(42) which gives
TP o R(@,f) = Ry(a) + mt. (B16)
1 - 2rydm ) By taking the derivative with respect tq one obtains
+ a+O0(a),
(L +rg)lom(1 +rg) — 1] R =R(@)da. (B17)

(B15a Since Rj(x) remains finite, we have to search for a diver-

gence indya. The characteristic paramete(t,x) can be ob-
Xo(@) = r05<1 +r1> + #‘ncw 0O(a?). (B15b) tained from Eqgs(410 and(42) which yield
0 0

The minimum oft,(«) is ata=0 if the coefficient ofa in Eq. a(t,x) =x+ gtz +Ro(a)t, (B1y)
(B15a is negative. The denominator of this coefficient has to
be positive since otherwise the argument of the logarithm irwhich leads to
Eq. (B153 would be negative. Thus if the slopefulfills the
two conditionsm>1/(2ry8) and m>1/[&(1+ry)] simulta- Ao = ;_
neously then the shock position is given Hy,xJ)=(ts(a 1 -Ry(at
=0),x(a=0)). As mentioned already in Sec. Ill A for,
<1 the first condition is relevant whereas fge> 1 the latter
condition dominates. Now one may ask if it is possible tha
m is larger than latter thresholds so that the shock woul
occur no longer ak,, of Eq. (B13) but ate,,=0, i.e., on the
boundary between secta(i$) and(lll) at rather small times.
In fact, for ro<<1 the conditionm.>1/(2ry9) is never ful- t= 1
filled so that the minimum remains at, of Eq. (B13). For s maxRy(x)’
ro>1 the conditiorm,> 1/[8(1+r)] leads tor,> y2. In the o N
latter case the shock occurs alwaysagi=0 and the new which is Eq.(45). The positionxs of the shock fpllows from
critical slope is given by 1#(1+ry)]. However, it should Ed: (3128)'2 For the Gaussian perturbatiomRy(x)=ro
kept in mind that the width of the perturbati®y(x) of Eq.  <&XP(-x"/ &) discussed in Sec. IV A one has=ve/24/rg
(9) is proportional tos only for ro=<1. For largerr,=1 the ~ and the position is given by
width is proportional torys. From the first termxs=xXg(« —  ela)?
=0) in Eq. (B15b) we thus conclude that the shock occurs at Xs=— 26~ Z(r_) m. (B21)
the uphill end of the avalanche with the shock position ap- 0
proximately given by the uphill end of the perturbationt at Note that the shock occurs at the downhill front of the

(B19)

Since there is always an interval of values ferwhere a
localized Ry(x) has a positive derivative, shocks are gener-
tedalways The time scalé; for the occurrence of the shock
s the earliest time wherga diverges, i.e., it is given by the

maximal slope of the initial perturbation,

(B20)
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