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Surface flow of granular material is investigated within a continuum approach in two dimensions. The
dynamics is described by the nonlinear coupling between a mobile layer and an erodible bed of static grains.
Following previous studies, we use mass and momentum conservation to derive St. Venant–like equations for
the evolution of the thicknessR of the mobile layer and the profileZ of the bed. This approach allows the
rheology in the flowing layer to be specified independently, and we consider in detail the two following
models: a constant plug flow and a linear velocity profile. We study and compare these models for nonstation-
ary avalanches triggered by a localized amount of mobile grains on a bed of initially constant slope. We solve
analytically the nonlinear dynamical equations by the method of characteristics. This enables us to investigate
the temporal evolution of the avalanche size, amplitude, and shape as a function of model parameters and
initial conditions. In particular, we can compute their large time behavior as well as the condition for the
formation of shocks.
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I. INTRODUCTION

The dynamics of granular flows and avalanches is of great
interest in many geophysical and industrial situations, such
as debris flows, snow avalanches, cliff collapse, and silo dis-
charges. Mathematical models describing flows on static
beds have been proposed and studied in the last thirty years.
An important stone in the construction of such models has
been laid in the papers of Savage, Hutter, and co-workers
f1–3g. More recently, physicists have also become interested
in this problem, and a lot of interesting experimental results
have been accumulated, as reviewed in Ref.f4g. In that pa-
per, a set of experiments and numerical simulations on
steady uniform dense granular flows in different geometries
is presented and analyzed using simple physical ideas. The
aim is to identify the important physical ingredients to be
plugged into the equations proposed for the modeling of
these avalanches. An interesting theoretical framework for
the description of granular flows follows the St. Venant–like
approach for thin flows in hydrodynamics, in which conser-
vation equations are integrated over the depth of the flowf5g.
This was proposed in Ref.f2g in the case of flows on inclined
rough beds. The simple friction law of the latter model has
been improved recently by Pouliquen who proposed an em-
pirical description of friction based on scaling properties
measured for steady uniform flowsf6g. The St. Venant ap-
proach can also be extended to erodible beds. An interesting
paper where the corresponding equations are established and
discussed is that of Douadyet al. f7g. The new feature of this
situation which makes it very different from the static bed
case is that the boundary between flowing grains and static
grains becomes itself a dynamical variable, which feeds back
on the properties of the flowing layer. In a special limiting

case, the St. Venant equations for erodible beds coincide with
the Bouchaud-Cates-Prakash-EdwardssBCREd equations
that were obtained on more phenomenological groundsf8g.
Alternative models, not based on the St. Venant approach,
can be found in Refs.f9,10g.

An important situation is that of nonuniform, unsteady
avalanches, whose dynamics is more complicated to capture
than steady flows. The success or failure to describe such
situations allows one to discriminate between different theo-
retical models. With St. Venant equations calibrated to de-
scribe uniform steady flows on a rough bed, one can capture
both steady frontsf11g and a generic nonuniform, unsteady
flow: that of an initially confined granular mass which is
suddenly released and runs down the very same rough bed
which is initially free of grainsf12g. This situation is of
interest in a geophysical context as a model of cliff collapse
f13,14g. Another famous example is that of an initial static
layer of grains on a plane, where avalanches are triggered by
a local solicitation with a pointy objectf15,16g. The nice
experimental pictures show two types of behavior: a “trian-
gular avalanche” when the thickness of the grain layer is
small, and an avalanche with an “uphill” propagative front
when the layer is thicker. It was observed that depth-
averaged equations, even with the empirical friction law of
Pouliquen, do not agree in the long-time limit with experi-
ments performed on an initially static layer of grainsf12g.

In the present paper, our aim is also to deal with unsteady
and nonuniform granular flows in a geometry close to these
elementary “response” situations where avalanches are
caused by local perturbations. More precisely, we look at the
dynamical evolution of a uniform slope on which some
amount of rolling grains is initially deposited locallyssee
Fig. 1d. However, unlike the above examples, we shall focus
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on avalanches running over an erodible bed, i.e., an infinitely
deep grain layer for which the selected thickness of moving
grains is not fixeda priori or bounded by a plane. This
situation then has one extra dynamical degree of freedom.
We also use St. Venant equations but, as will be made more
precise in the next section, one needs to use additional physi-
cal assumptions to close these equations. We motivate two
different assumptions, corresponding to simple shapes of the
velocity profile within the flowing layer, that lead to two sets
of coupled nonlinear differential equations for the shape of
the bed and the height of the flowing layer. These equations,
although oversimplified, can be argued to correspond to the
limiting cases of thin and thick flows, when the slope is close
to the angle of repose. Moreover, they turn out to be exactly
soluble, which provides a solid starting point to describe the
admittedly more complex experimental situations. In order to
solve these equations, we apply the methods of characteris-
tics well known in hydrodynamicsf17g. This method was
already used in the context of avalanches in, e.g., Refs.
f18,19g.

After the derivation of the model in Sec. II in which we
shall specify the physical assumptions made, we present the
solutionsscorresponding to the two limiting cases mentioned
aboved in the two following sections. We detail the different
predictions of our models, and compare how the triggered
avalanches die out or grow, depending on the initial slope of
the bed profile, and discuss the possible appearance of
shocks. We finally discuss various shortcomings of the mod-
els, in particular concerning the detailed description of ava-
lanche fronts, and possible future improvements.

The present paper is rather technical, but we hope that the
scope of the method used is sufficiently broad to warrant
interest in itself; furthermore, obtaining an explicit exact re-
sult for the shape of avalanche shapes and sizes gives impor-
tant benchmarks to which experiments can be compared, and
will eventually help in selecting the correct set of hydrody-
namical equations for granular avalanches.

II. ST. VENANT EQUATIONS FOR GRANULAR
AVALANCHES

Observations show that granular avalanches consist of a
thin moving layer of grains over a bed ofsquasidstatic ones
f20g. The two natural variables in this model are therefore
the profile of the static/flowing boundaryZ, and the thickness

R of the rolling grain layer, both functions of time and hori-
zontal positionx. The aim of this section is tosre-destablish
coupled differential equations for the variablesR andZ de-
picted in Fig. 2. These equations encode the conservation of
the number of grains as well as their horizontal momentum
f7g. They describe how static grains may be dislodged and
contribute to the flowserosiond, and, vice versa, how moving
grains may come to restsdepositiond f8g.

A. Conservation equations

BesidesR andZ, another important field is of course the
velocity in the moving layer. Let us denote byusx,yd the
horizontal component of the velocity profile in this layer—
although not explicit, time dependence ofu is understood.
We choose to work in thex,y coordinate frame rather than in
the frame locally tangent to the slope, since the latter is itself
a dynamical quantity. The depth-averaged velocity of the
flow is defined asU=s1/RdeZ

Z+Rdy usx,yd. With this quan-
tity, the number of particles passing through a vertical line at
positionx during the time intervaldt is sr /mdRU dt, wherer
is the mass density of the granular material andm the mass
of a single grain. The difference of this number atx and x
+dx makes the volumesR+Zddx change, so that the conser-
vation of mass reads

]tsR+ Zd = ]xsRUd, s1d

which is sometimes denoted as an Exner equation in geo-
physics. In a similar way, thex component of the momentum
passing through the vertical line at positionx during dt is
rRW dt, whereW is the average of the square of the veloc-
ity: W=s1/RdeZ

Z+Rdy u2sx,yd. The change of horizontal mo-
mentumrRU dx in the control volumessee Fig. 2d can then
be written as

FIG. 1. Rolling grains are locally deposited on an erodible sand
bed which has initially a uniform slopem+m, wherem is the tan-
gent of the angle of repose.

FIG. 2. Flowing layer thicknessRst ,xd sgrayd and bed profile
Zst ,xd scrossesd. The grains flow from the right to the left. The
dashed box is the control volume for which mass and momentum
conservation laws are written.
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]tsRUddx= ]xsRWddx+
1

r
dFx, s2d

wheredFx is the x component of the forces acting on this
volume.

B. Stresses and forces

These forces are of two kinds: those coming from the
lateral sides through the stresssxx, and those due to the con-
tact between the rolling layer and the bed. Assuming a hori-
zontal normal stress proportional to the “hydrostatic” pres-
sure sxxsx,yd=brgsR+Z−yd, the corresponding force is
eZ

Z+Rdy sxx=
1
2brgR2. Numerical simulations suggest values

for b that increase from roughly one half in static piling to
unity for uniform steady flowsf4,21,22g. In Ref. f2g the
value ofb is obtained for unsteady and inhomogeneous situ-
ations from a Mohr-Coulomb yield criterion. It turns out that
b can increasesdecreased compared to unity if the grains are
compressedsdecompressedd by the flow. For the sake of sim-
plicity, we consider hereb as a phenomenologicalconstant.
Taking the difference of this force on the two sides of the
control volume, the contribution of the horizontal normal
stress todFx finally readsbrgR]xR dx. To compute the fric-
tional part ofdFx, we assume that the grains in the control
volume behave, with respect to the bed, like a frictional solid
swith normal reactionN and friction forceT=mNd with m the
friction coefficient. Definingu by tanu=]xZ, the balance of
the weight of this volume givesrgR dx=N cosu+T sinu.
The horizontal contribution ofN andT to dFx sto the lowest
order inu andmd is rgRs]xZ−mddx. In summary, we get

dFx = brgR]xR dx+ rgRs]xZ − mddx. s3d

We have assumed that the granular densityr is the same
in the moving and the static parts, which is certainly a valid
hypothesis for dense flows as considered here. More impor-
tantly, the friction coefficientm will be taken as a constant in
the following. We note that a more sophisticated friction law
required aR dependentm f6g. Moreover, it is well estab-
lished that there are few degrees of hysteresis between the
starting and the stopping anglesf23g, which can be simply
understood even at the scale of a single grain rolling down a
“pile” consisting of a layer of regularly spaced fixed grains
f24,25g. As will be emphasized in the conclusion, this slight
difference is of great importance when it comes to the de-
scription of regions where the moving layer is about to jam
or the static grains about to move, i.e., at the feet of ava-
lanche frontssR→0d. Besides, it has been shown that in
quasi-two-dimensional experiments conducted in a thin
channel between two plates, the friction of the rolling on
those plates plays a major role in the dynamics of the ava-
lanchef26,27g. Such a boundary effect is not encoded here.

C. Flow profiles

In the case of a fixed nonerodible profileZ, the above two
St. Venant conservation equations can be used for the deter-
mination of the space and time evolution ofR and U f12g.
On the other hand, if the bed profile is a dynamical quantity,

the three quantitiesU ,R, andZ are independent dynamical
variables. A complete description would therefore require an
additional equation of “internal force balance,” where one
should specify the part of the forces acting on the moving
layer that contribute to the acceleration and friction of the
rolling grains rather than the erosion/deposition processes,
i.e., the exchange betweenR andZ.

In order to close the above equations forR andZ only, we
rather make an explicit assumption on the shape of the ve-
locity profile u. The integrals definingU andW can then be
expressed as a function ofR. This means that we implicitly
assumeinstantaneousadaptation of the velocity to the flow.
Two limiting assumptions for the velocity profile will be in-
vestigated below:sid the plug flow for which usx,yd=U
=Cst snamed modelP for “plug” d, sii d a linear velocity pro-
file usx,yd=gy snamed modelL for “linear”d.

Casesii d is strongly supported by experiments and simu-
lations performed onsteadytwo-dimensionals2Dd systems
or when the slope is close to the angle of reposef4,28,29g.
The natural selection of this linear profile is still a puzzling
issue and is the result of several mechanisms at the grain
level se.g., trappingd or at larger scalessnonlocal effects,
clusteringd f30,31g. In particular, it should be emphasized
that the velocity gradient is found to be constant, and it is the
thickness of the rolling layerR which adapts its value to the
external imposed shear stress, see, e.g., Refs.f4,32g. This
linear profile assumption leads toU~R. In contrast, note that
for steady granular flows on a fixed steep and rough inclined
plane, a Bagnold-like velocity profileU~R3/2 is observed
f29g. However, in both cases, the velocity tends to zero for
infinitely thin flowing layers, in stark contrast with the fact
that avalanche fronts propagate at a nonzero velocity. For
very thin flowsswhenR is of the order of a grain diameter or
lessd, it is more reasonable to assume a constant plug flow,
corresponding to casesid, that leads toUsR→0d=U0.0
f33g. Physically, this corresponds to the fact that there cannot
be defined a velocity gradient on the scale of one grain. If the
flowing layer is of intermediate thickness, we expect that the
velocity profile is more complicated, and neither of the two
above assumptions can be quantitative. However, we expect
that these two limiting cases can be used to guess the quali-
tative behavior in the general case.

Finally, note that a model similar to our Eqs.s1d–s3d has
been very recently studied by Khakharet al. f34g, but for
different geometries and initial conditionssheap and rotating
cylinder flowsd. Their momentum balance equation has,
however, an additional term which describes grain collisions
in the mobile phase. Thus they combine effects of internal
dissipationf35g and external forces as gravity and solid like
friction between the two phases.

D. Higher order derivatives

The depth-averaged conservations laws lead to the first
order differential equationss1d and s2d. However, in general
higher order derivatives can arise both from the dependence
of the velocityU on spatial derivatives ofZ,R, and via the
force acting on the test volume. For example, the depth-
averaged velocityU can depend on the local slope]xZ of the
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sand bed. For small]xZ this leads to linear order in Eqs.s1d
ands2d to second order derivatives ofZ and terms quadratic
in first order derivatives of both profiles. The forcedFx on
the test volume depends beyond lowest order inu
=arctans]xZd also nonlinear on first order derivatives ofZ.
Diffusive terms are also present in more phenomenological
approaches like the BCRE modelf8g. Our above assump-
tions neglect such kinds of higher order derivatives or non-
linear powers of first order derivatives since we are inter-
ested in only slightly curved profiles. The effect of such
diffusionlike terms would be a “smoothening” of profiles
with larger curvature. For example, bumps become flatter
and valleys are filled with grains during the flow evolution.
Another effect of higher order derivatives is the regulariza-
tion of shocks which can occur in the first order equations,
see Sec. III A 2. Our first order equations should contain the
most important physical mechanisms for the purpose of ana-
lyzing the effect of local perturbations of initially flat in-
clined sand beds.

III. PLUG FLOW: CONSTANT VELOCITY PROFILE
(MODEL P)

For a plug flow with a constant average horizontal veloc-
ity U we trivially getW=U2, and one obtains from the analy-
sis in Sec. II the model

]tZ = − R]xZ − bR]xR, s4ad

]tR= ]xR+ R]xZ + bR]xR. s4bd

Here the dimensionlesst ,x,R, andZ are measured in units of
U2/g, and t is rescaled byU /g. Furthermore, as we are in-
terested in surface profiles close to the avalanche slopem ,Z
is measured relative to the critical slope, i.e., it is replaced by
Z+mx. The quantityb is then the only free parameter of
these equations. Recall that an isotropic stress distribution
corresponds tob=1. Note also that settingb=0 yields the
so-called BCRE model introduced in Ref.f8g salthough with-
out the diffusive terms considered thered. Any small but finite
b thus leads to new nonlinearities. Before we study the
propagation of a localized perturbation, as a first simple
benchmark of the model, we briefly note the predictions of
the model for the initial situation of a constant slopeZ0sxd
=mx and a homogeneous amount of rolling grains,R0sxd
=%. It is easy to see that in this case the thickness of the
mobile layer growssor decaysd exponentially in time, de-
pending on the sign ofm, with Rst ,xd=%emt. The bed profile
is then given byZst ,xd=mx+%s1−emtd. Note that this solu-
tion doesnot depend onb sinceRst ,xd is independent ofx.

A. Infinite stress anisotropy „b=0…

1. Analytical solution

This nonlinear model has been studied previously for the
case of a bed profile consisting of two regions of constant but
different slopes and an initially homogeneoussconstantd
amount of rolling grainsf18g. However, the method of char-
acteristic curves can be also employed to study local pertur-

bations in the form of an initially localized amountR0sxd of
rolling grains. In fact, for arbitrary initial profilesR0sxd and
Z0sxd the solution of Eqs.s4d with b=0 can be obtained
analytically in implicit form. Using the method of character-
istic curves, see Appendix A, we introduce the new coordi-
natesast ,xd and bst ,xd. The mapping between the two co-
ordinate systems depends on the solution forRst ,xd, Zst ,xd
and thus on the initial profiles due to the nonlinearities. The
so-called characteristic equations, which determine simulta-
neously the coordinate mapping and the profiles, for this
model read

]ax − z+]at = 0, s5ad

]bx − z−]bt = 0, s5bd

− R]aZ + sz+ − Rd]aR= 0, s5cd

− R]bZ + sz− − Rd]bR= 0, s5dd

with the characteristic directions given by

z+ = − 1, z− = R. s6d

The solution of these equations can be obtained explicitly,

tsa,bd = −E
−a

b db8

1 + Rsa,b8d
, s7ad

xsa,bd = − b − tsa,bd. s7bd

As function of these new coordinates the solution can be
written in the closed form

Zsa,bd = Z0sad, s8ad

Rsa,bd = WfR0s− bdeR0s−bd+Z0s−bd−Z0sadg, s8bd

whereW is Lambert’s functionf36g, see Fig. 3. Before we
proceed with special choices for localized initial profiles
R0sxd, we would like to point out that the model of Eqs.s4d
with b=0 can be still solved exactly if the coefficient of]xZ

FIG. 3. Bold curve: plot of the Lambert’s functionWsxd. Thin
curves: small and largex expansionsWsxd,x−x2 andWsxd, ln x
−ln ln x, respectively.
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on the right hand side of both equations is a general function
of Rst ,xd, FsRd. The above case corresponds toFsRd=R.

In order to progress with analytical techniques we make a
special choice for a localizedR0sxd which allows for a closed
expression for the integral of the coordinate map in Eq.s7ad.
Below, we will demonstrate by an explicit numerical integra-
tion of the coordinate map for a generic Gaussian perturba-
tion R0sxd that the following results are robust with respect to
the precise form of the perturbation. Thus we proceed with
the choice

R0sxd = Wfr0e
r0−uxu/dg s9d

for the initial profile. This profile decays exponentially at
large uxu and has a amplitude ofr0. For the relevant limit of
r0!1 the width at half amplitude isd ln 2. This form is
adapted to the integral in Eq.s7ad since the latter equation
can be written as

tsa,bd = − a − b

+E
−a

b ]b8Rsa,b8ddb8

]b8fln R0s− b8dg − R08s− b8d − Z08s− b8d

s10d

andR0sxd of Eq. s9d has the property that

]xfln R0s− xdg − R08s− xd = −
1

d
sgnsxd. s11d

For the bed we will consider always a profile with a constant
slope,

Z0sxd = mx, s12d

where due to our definition ofZ the parameterm measures
theexcessslope relative to the critical angle. For these initial
data the solution of Eqs.s4d in the curved coordinate frame
reads

Rsa,bd = Wfr0e
r0−ubu/d−msa+bdg, s13ad

Zsa,bd = ma. s13bd

In order to integrate the equations for the coordinate map-
ping, see Eq.s7ad, we have to divide the space-time into
different sectors due to the sign function of Eq.s11d. De-
pending on the sign ofa andb we define the following three
sectors,sId: aø0, b.0; sII d: aø0, bø0; andsIII d: a.0,
bø0. The casea, b.0 is mapped to negative times, and is
therefore not of interest. The boundary between sectorssII d
and sIII d in the t-x plane can be obtained by integrating Eq.
s7ad with a=0 andb,0. The boundaries are given by

xI/II std = − t, s14ad

xII/III std =
r0

m− 1/d
sesm−1/ddt − 1d, s14bd

where the subscript indicates the adjacent sectors, see Fig. 4.
In sectorssId and sIII d an explicit expression for the pro-

files can be obtained. From the integrated version of Eq.s7ad
one easily gets the result

Rst,xd = R0„ast,xd…esm±1/ddt, s15d

where ± refers to sectorsId and sIII d, respectively. Together
with Eq. s13bd this result shows that the system has a simple
time evolution along the characteristic curves of constant
ast ,xd. Using Eqs.s13bd and s15d and b=−t−x, we obtain
the explicit expression for the coordinate mapping in sector
sId,

1

m
Zst,xd = ast,xd = x +

1 − esm+1/ddt

m+ s1/ddesm+1/ddt

3WF r0

m+ 1/d
er0+x/dfm+ s1/ddesm+1/ddtgG .

s16d

The result for sectorsIII d is obtained from the latter expres-
sion by the replacementd→−d. Equationss15d ands16d are
our final result for the profiles in sectorssId and sIII d. In
sector sII d the characteristic curvesxastd which map to a
constanta can be obtained again explicitly but we were un-
able to invert them to obtainast ,xd. The characteristic curves
read

xastd =
1

m− 1/d
hhsadesm−1/ddt + lnfhsad/r0g + ma − r0j

s17d

with the function

hsad = W2/d/sm+1/ddfr0e
r0−magWsm−1/dd/sm+1/ddfr0e

r0+a/dg.

s18d

As in sectorssId andsIII d the curves behave exponentially in
time with, however, more complicated amplitudes. The char-
acteristic curves are shown forr0=0.1, d=5.0, and different
slopesm in Fig. 5.

With the characteristic curves at hand, the solutions for
Rst ,xd and Zst ,xd, at a fixed time, are given in parametric
form in the x-R or x-Z plane by the curves(xastd ,Rsa ,b
=−x− td), (xastd ,ma), respectively, witha as running param-
eter.

2. Appearance of shocks

Before we discuss the resulting profiles, we will study the
possibility for the occurrence of shocks, i.e., discontinuities
of the profiles which develop at a finite time. Such kind of
singularities are possible for nonlinear dynamics since adja-

FIG. 4. ModelP: Boundaries between different sectors in the
t-x plane.
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cent characteristic curves can bend differently, leading even
for small differences in curvature at small times to intersect-
ing curves at larger times. Beyond the time at which the
curves cross for the first time, there is a region where a
unique solution no longer exists. Two such situations are
visualized for our model in Figs. 5sad and 5scd. If character-
istic curves cross each other they form an envelope. The
shock position is then determined by the cusp of the enve-
lope. While we leave the precise definition and the calcula-
tion of the envelope to Appendix B, we discus here the cri-
terion for the existence of shocks in our model. We are
interested in not too large amplitudesr0. For r0,Î2, there is
a simple condition for the formation of shocks. Then it can
be shown, see Appendix B, that shocks occur only if the
slope of the profile of the resting grains is larger than the
critical value

mc =
Î2 − 1

d
. s19d

Thus for broad perturbations in the moving phase shocks
occur already for small slopesm. The exact timets and po-
sition of the shock is in general difficult to calculate. For
sufficiently largem sm.1/s2r0dd if r0,1 andm.1/fds1

+r0dg if r0.1d an exact expression can be obtained and is
given in Appendix B. On the other hand, for slopes close to
the critical one the shock time diverges as

ts , sm− mcd−1. s20d

For our above choice of parametersr0 and d for Fig. 5 the
critical slope ismc=0.0828.

3. Different avalanche dynamics

Figure 5 shows four possible situations:sad A slope m
which is larger than criticalmc but smaller than 1/d so that
the characteristic curves saturate at large times,sbd a slope
smaller than the criticalmc, scd a slope which is larger than
both the criticalmc and 1/d so that the curves grow expo-
nentially in time, andsdd the case of a negativem. The so-
lutions for the corresponding profiles ofRst ,xd and Zst ,xd
are shown in partssad of Figs. 6–8. Plotted are the two
curvesZst ,xd−mx salways corresponding to the lower curved
and Zst ,xd−mx+Rst ,xd so that the gap between the two
curves represents the layer of moving grains. The maximum
of the perturbation propagates downhill with a constant ve-
locity which is 1 in our rescaled units. For a negative slopem
scorresponding to an actual slope smaller than the angle of

FIG. 5. Model P: Characteristic curves with constanta for a perturbationR0sxd of Eq. s9d with r0=0.1, d=5.0, and slopes
sad m=−0.05,sbd m=0.05,1/d, scd m=0.15,1/d, andsdd m=0.25.1/d. The shaded area indicates the region with shocks. The dashed
curves mark the boundaries between the different sectors, cf. Fig. 4.
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reposed all grains of the perturbation come finally to rest,
generating a bump on the initial bed profile which corre-
sponds to the baseline in the plot, see Fig. 6sad. The ampli-
tude of the perturbation decays exponentially at large times,
Rst ,x=−td. r0 expsr0+mtd. If we define the downhill end of
the bump by the condition that the maximum of the pertur-
bation in Rst ,xd has decayed to some fractione!1 of the
initial amplitude, then the width of the bump scales like
lnsed /m for small r0 since the peak inRst ,xd moves with a
velocity of 1. Thus the final width of the deposited amount of
grains is independent of the amplitude and width of the per-
turbation but only determined by the initial slope of the bed.
For positive slopesm the amplitudeRmax of the perturbation
grows at large times linearly,

Rmax. ms1 + mddt, s21d

with a growth rate which is independent of the initial ampli-
tude r0. However, there is a broad transient behavior with

logarithmic corrections at intermediate time scales. The ex-
ponential time behavior found at the beginning of this sec-
tion for an initially homogeneous mobile phase is recovered
for m,0 but is in contrast to the linear growth for positive
m.

For both positive and negative initial slopes, the profile
Zst ,xd of the bed no longer evolves after the avalanche has
passed. The resulting profileZ`sxd becomes thus time inde-
pendent for times larger than asposition dependentd time
scale. This asymptotic profile is only well defined if no shock
occurs. In the latter case it is implicitly given by

1

m− 1/d
FlnShsZ`sxd/md

r0
D + Z`sxd − r0G = x, s22d

where the functionh is given by Eq.s18d. The latter expres-
sion is valid in sectorsII d which is the relevant region for
large times, see Fig. 4. From this result one can obtain the
slope]xZ` at a given value ofZ,

]xZ`sxd = sm− 1/ddF h8„Z`sxd/m…

mh„Z`sxd/m…

+ 1G−1

. s23d

The behavior ofZ` depends on the sign ofm. For negativem
the deposited grains form a bump that was described above

FIG. 6. ModelP with b=0: Fixed time profilesZst ,xd−mx and
Rst ,xd+Zst ,xd−mx so that the gap between two corresponding
curves represents the thickness of the mobile phase. Plotsad is for
R0sxd of Eq. s9d and sbd for a GaussianR0sxd, both for m=−0.05.
The profiles are for timest=0, 5, 10, 20, and 50. Here and in the
following plots of profiles the plotting intensity decreases with in-
creasing time.

FIG. 7. Analog of Fig. 6 but form=0.05 and timest=0, 5, 20,
40, and 60.
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and whose exact shape is given by Eq.s22d. Across this
bump, we find that the change of the slope as compared to
the initial slopem is always rather small. Far away from the
bump sat large positive and negativexd one has h8 /h
.−1/d, and thus]xZ`=m remains, of course, unchanged
from the initial profile. For positivem the profile Zst ,xd
shows again a constant slope after the avalanche has passed,
i.e., Z`=m`x, cf. Fig. 7. The asymptotic slope can be ob-
tained from the behavior of the functionh at large negative
arguments. We find

m` = mF1 +S 2m

md + 1 +Î2
DS 1

mc − m
DG . s24d

Interestingly, the relative change of the slope is independent
of the amplituder0 of the perturbation and depends only on
the product of the initial slopem and the widthd of the
perturbation. Surprisingly, the expression in the square
brackets in Eq.s23d is larger than one for positivem, and

even diverges as the slopem approaches the critical valuemc
beyond which shocks occur,m`,smc−md−1. It is important
to note that the layer of moving grains decays to zero at large
times at the uphill end of the avalanche, although the slope
of the bed is steeper than before the avalanche started. This
behavior can be easily understood from the property of Eq.
s4d in which the exchange between the static and rolling
phase is proportional toR. Of course, physically, there will
be a maximum angle for the stabilityseven forR=0d beyond
which the above predictions are irrelevant, and an extended
model has to be considered.

An important quantity is the total size of the avalanche.
Within our model, we define the sizeIstd of an avalanche as
the spatially integrated amount of mobile grains, i.e.,

Istd =E
−`

`

Rst,xddx. s25d

The integration can be performed for each sector separately
by a change of variables to the characteristic coordinatea.
The contribution from sectorsIII d can be neglected at larger
times since the avalanche starts atx=0 to propagate to the
left sdownhilld, cf. Fig. 4. For negativem, the perturbation
decays exponentially, and thus we obtain for the size

Istd = 2r0d er0+mt. s26d

For positivem we observe that the size of the avalanche
shows a quadratic increase in time,

Istd = m2d
1 + md

1 − md
t2, s27d

at asymptotically large times. Interestingly, the growth of the
avalanche depends only on its initial widthd but not on the
amplituder0. By comparison with the scaling of the ampli-
tude of the avalanche, cf. Eq.s21d, we observe that the width
of the avalanche must grow also linear in time,md / s1
−mddt.

So far we have studied mainly an initial perturbation
which is particularly suited for obtaining analytical results.
In order to check the robustness of our results with respect to
the precise form ofR0sxd we have chosen also a Gaussian
R0sxd=r0 exps−x2/d2d together with the sameZ0sxd=mx as
before. Contrarily to the previous case, the initial perturba-
tion has no cusp atx=0. By a numerical computation of the
integral of Eq.s7ad we obtained the profiles shown in parts
sbd of Figs. 6–8, usingr0=0.1, d=5, as before. As can be
observed from the plots the characteristic features can be
regarded as robust. However, the moving layer, i.e., the gap
between the upper and lower graph, decays more rapidly due
to the faster decay of the Gaussian profile. Of course, the
critical slopemc for shocks is no longer given by Eq.s19d.
We observe that for the GaussianR0sxd shocks occur only
beyond amc which is increasedcompared to the exponen-
tially decaying profile of Eq.s9d with the same width at half
height, cf. Fig. 8.

FIG. 8. Analog of Fig. 6 but form=0.15 and timest=0, 10, 20,
40, and 60 forsbd only. In plot sad a shock occurs at the uphill end
of the avalanchesshock timets=41.71d. Note that for the Gaussian
R0sxd, plot sbd, shocks are generated only for larger values ofm, see
text.
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B. Strong stress anisotropy: Smallb

1. Analytical result for general slopes m

So far we have assumed such a strong stress anisotropy
that there is no horizontal stresssxx, i.e.,b=0 in the model of
Eq. s4d. In this section we will study the influence of a small
sxx on the avalanche dynamics we found in the previous
section. Although steady state simulations suggest a value of
b close to 1f21,22g, it is interesting to study the regime of
smallb in order to compare to the BCRE model. The method
of characteristics can be applied of course to arbitrary values
of b, yielding a system of equations which we could not
solve explicitly so that we had to resort to a perturbative
treatment. Thus we consider the terms proportional tob in
Eq. s4d as small perturbations of theb=0 solution. This can
be done by the following ansatz:

Z = Z1 + bZ2, s28ad

R= R1 + bR2, s28bd

whereZ1 andR1 denote the solution forb=0 of the previous
section. Although one expects realistic values ofb of order
unity, the perturbative calculation should allow for a qualita-
tive assessment of the effect of a finite horizontal stress. The
dynamics of the corrections are then described by the follow-
ing linear coupled equations:

]tZ2 = − R1s]xZ2 + ]xR1d − R2]xZ1, s29ad

]tR2 = ]xR2 + R2]xZ1 + R1s]xZ2 + ]xR1d. s29bd

Since we consider corrections of linear order inb, the terms
containing derivatives of the profilesR2 andZ2 have exactly
the same form as those in Eq.s4d with b=0. Thus the char-
acteristic directionsz+=−1, z−=R1, and characteristic curves
remain unchanged for smallb. In terms of the characteristic
coordinatesa andb, the corrections obey the equations

]aZ2 +
1 + R1

R1
]aR2 − SR2

R1
]xZ1 + ]xR1D]at = 0, s30ad

]bZ2 + sR2]xZ1 + R1]xR1d]bt = 0. s30bd

Here all functions have to be considered as depending ona
andb, in particulartsa ,bd is given by Eq.s7ad. In order to
express the derivatives with respect tox as functions ofa ,b,
we use]x=]xa]a+]xb]b together the relations

]xb = − 1, ]xa =
1

1 + R1

1

]ax
s31d

with xsa ,bd given by Eq.s7bd. Using these relations and the
solutions for b=0 of Eq. s8d with the initial condition
Z0sad=ma, Eq.s30d can be rewritten after integration overa
as

Z2 +
1 + R1

R1
R2 + lnS 1 + R1

1 + R0s− bdD
−E

−b

a

da8]bR1sa8,bd]a8xsa8,bd = 0, s32ad

]bZ2 +
R1

1 + R1
]bR1 +

m

s1 + R1d2]ax
S R1

2

1 + R1
− R2D = 0,

s32bd

where the functions depend ona andb unless arguments are
written explicitly. The explicit expression for]ax can be ob-
tained from the solution forb=0, leading to

]ax =
1

1 + R0sad
−E

−a

b

db8
]aR1sa,b8d

f1 + R1sa,b8dg2 . s33d

The functionR2 can be eliminated from Eq.s32bd by using
Eq. s32ad, and the resulting linear ordinary differential equa-
tion for Z2 can be integrated easily. The result is

Z2sa,bd = expFE
−a

b

db8g1sa,b8dGE
−a

b

db8g2sa,b8d

3expF−E
−a

b8
db9g1sa,b9dG , s34d

with the functions

g1sa,bd = −
mR1

s1 + R1d3]ax
, s35ad

g2sa,bd = −
R1

1 + R1
]bR1 −

mR1

s1 + R1d3]ax

3HR1 + lnS 1 + R1

1 + R0s− bdD
−E

−b

a

da8]bR1sa8,bd]a8xsa8,bdJ . s35bd

This is our final result forZ2, the profileR2 can be computed
now from Eq.s32ad. Using the explicit result forR1 of Eq.
s8bd the multiple integrals can be performed easily numeri-
cally. The resulting profiles are shown in Fig. 9 for the pa-
rametersr0,d, andm of Sec. III A with b=0.5. For compari-
son the solution forb=0 are also shown as dashed curves. As
can be seen from Fig. 9sad, for negativem the avalanche and
the bed profile are not much affected by the presence of
horizontal stress,b. In contrast, for positive slopesm there
is more visible effect of the horizontal stress. This effect
grows with increasing time scale, cf. Fig. 9sbd. As one could
naively expect, horizontal stress has the tendency to shift the
peak in dynamics phase downhillsto the leftd. This shift will
be analyzed quantitatively below for the casem=0 and by
comparing the numerical results of Figs. 9 and 10 the shift
appears to be independent ofm. For the bed profileZst ,xd
the horizontal stress leaves the final slope after the avalanche
almost unchanged but it produces a steeper slope inZst ,xd
where the moving layerRst ,xd has maximal thickness. There
is also a tendency for the bed profile to form a local dell at
the peak of the avalanche, see Fig. 9sbd. This observation
becomes especially pronounced form=0, see Fig. 10.
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2. Explicit results at the angle of repose„m=0…

It is obvious from the structure of Eq.s34d, s35ad, and
s35bd that major simplifications occur if the initial bed profile
is exactly at the angle of repose, i.e.,m=0. Thus we can
study easily the effect of a horizontal stresssfinite bd in this
situation. Let us first summarize the results in the absence of
horizontal stresssb=0d whenm=0. The static grains stay for
all times at the angle of repose so thatZ1st ,xd=0, and the
initial perturbationR0sxd in the moving layer simply propa-
gates downhill,R1st ,xd=R0st+xd. Thus the amount of grains
in both the bed and the moving layer are conserved. The
situation is different for finiteb. The layers of static and
flowing grains, respectively, have coupled dynamics with the
corrections from finiteb given by

Z2sa,bd = R0sad − R0s− bd + lnS1 + R0s− bd
1 + R0sad D , s36ad

R2sa,bd =
R0s− bd

1 + R0s− bd
hR08s− bdtsa,bd − Z2sa,bdj,

s36bd

where the mapping betweent ,x and a ,b has form=0 the
simple form

tsa,bd = −E
−a

b db8

1 + R0s− b8d
, s37ad

xsa,bd = − tsa,bd − b. s37bd

These equations provide a closed parametric form of the dy-
namics for a general initial perturbationR0sxd. The resulting
time evolution of a Gaussian perturbationR0sxd=r0

3exps−x2/d2d is shown in Fig. 10. Compared to the absence
of horizontal stress,b=0, there are a number of interesting
features. The avalanche amplitude increases and the maxi-
mum is shifted downhill. The layer of static grains displays a
bump at the initial position of the perturbation and a dell
which propagates downhill close to the maximum of the ava-
lanche peak. At large times, Eq.s37ad leads toa.x which
together withb=−x− t and Eq.s36d yields an explicit expres-
sion for the profiles. For a small avalanche amplituder0, the
position of the peak followsx=−t−d /2 for a GaussianR0sxd.
The maximum ofRst ,xd grows linearly with time,Rmax

,bsr0
2/ddt, while in the absence of horizontal stresssb=0d it

remains constant. Notice that this linear growth was ob-
served forb=0 only at angles larger than the repose angle
sm.0d, cf. Eq. s21d. The form of the bed profileZst ,xd can
be directly obtained from Eq.s36ad. There are two identical
contributions which are shifted relative to each other byt.
The first contribution is approximately given bybhR0sxd
−lnf1+R0sxdgj. This term represents the bump at the start
position of the avalanche. The second contribution hasx re-

FIG. 9. ModelP with finite b=0.5: Profiles for a GaussianR0sxd
and sad m=−0.05 sfor t=0, 5, 10, 20, and 45d, sbd m=0.05 sfor t
=0, 10, 20, 30, and 45d. The dashed curves represent the corre-
sponding profiles forb=0 of Sec. III A and are shown for
comparison.

FIG. 10. ModelP at the angle of reposesm=0d for finite hori-
zontal stress,b=0.5: Profiles for a GaussianR0sxd at timest=0, 15,
30, and 60. The dashed curves correspond to the absence of hori-
zontal stress,b=0, where the perturbationR0 propagates without
changing its shape.
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placed byx+ t, corresponding to the dell traveling with the
avalanche downhill, cf. Fig. 10. Thus both features of the bed
profile are determined by the initial profile of the perturba-
tion in the moving layer.

IV. LINEAR VELOCITY PROFILE (MODEL L)

It has been argued that a constant velocity profile, as as-
sumed in the previous section, is only applicable to thin sur-
face flow f33g. For a thicker layer of rolling grains, the ve-
locity should depend on the amount of mobile grains.
Experiments and simulations for steady deep systems sug-
gest a linear profile for the average horizontal velocity
usx,yd=gy of the flow. With this profile we haveU= 1

2gR,
W= 1

3g2R2= 4
3U2 and the conservation conditions of Eqs.s1d

and s2d yield the model

]tZ = − ]xZ − b]xR, s38ad

]tR= R]xR+ ]xZ + b]xR. s38bd

Here all lengths are divided byg/g2, and time is divided by
g. Again, Z is replaced byZ+mx. The model contains after
this rescaling only one free parameter,b. It is rather impor-
tant to note that the latter model is valid only as long asR
remains positive since we obtained it from Eq.s2d after di-
vision by R. Thus the actual solution of Eq.s38d is given by
the maximum ofR=0 and the formal solution forR of Eqs.
s38ad and s38bd. In this section we will study the conse-
quences of aR dependent linear velocity profile both in the
absencesb=0d and presencesbÞ0d of horizontal stress. We
note that for an initially uniform amount of rolling grains
R0sxd=% and a sand bed with constant slopeZ0sxd=mx the
solution to Eqs.s38d is rather simple. As opposed to the
exponential growth for modelP, the thickness of the mobile
layer increases here only linearly in time,Rst ,xd= % +mt and
Zst ,xd=msx− td decreases accordingly. As for modelP this
solution is independent ofb.

A. Infinite stress anisotropy „b=0…

1. Analytical solution

In the limit of b=0 Eqs.s38ad and s38bd are decoupled.
Such set of equations has been studied by de Genneset al. to
describe a thick flow of granular matter in a bounded geom-
etry f33g. Here we consider this simple model in anunre-
stricted geometry but we allow for general initial profiles
R0sxd and Z0sxd. Following again the approach outlined in
Appendix A, we obtain the characteristic equations

]ax − z+]at = 0, s39ad

]bx − z−]bt = 0, s39bd

− ]aZ + sz+ − 1d]aR= 0, s39cd

− ]bZ + sz− − 1d]bR= 0, s39dd

with the characteristic directions given in the case ofb=0 by

z+ = 1, z− = − R. s40d

Since one of the characteristic directions is constant, these
equations can be integrated in a way which is similar to the
procedure we used for model with a constant velocity profile
in Sec. III A. From this calculation one finds easily that the
general solution of Eqs.s38d with b=0 reads

tsa,bd =E
−a

b db8

1 + Rsa,b8d
, s41ad

xsa,bd = − b + tsa,bd, s41bd

Rsa,bd = − 1 +ÎfR0sad + 1g2 + 2fZ0sbd − Z0s− adg,

s41cd

Zsa,bd = Z0s− bd. s41dd

Studying the configurations we studied in Sec. III A for
model P with a constant velocity profile, we chooseZ0sxd
=mx so that the integral in Eq.s41ad can be computed ex-
plicitly. One obtains, using Eq.s41cd:

tsa,bd =
1

m
hÎfR0sad + 1g2 + 2msa + bd − R0sad − 1j

=
1

m
fRsa,bd − R0sadg. s42d

Since in the limitb=0 Eq. s38ad acquires a simple linear
form, we have obviously the result

Zst,xd = Z0sx − td = msx − td. s43d

At sufficiently large times one hasa,x+mt2/2, and thus
Eq. s42d shows that the amount of rolling grains is given by

Rst,xd = R0sx̃d + mt with x̃ ; x +
m

2
t2. s44d

2. Physical discussion

From the above result, the shape of the perturbation at a
given large time would be the same for all initial slopesm.
From this result, the maximum of the mobile layerRst ,xd
travels with a velocityvmax=r0+mt/2 which, for m.0, in-
creases linear in time, i.e., the perturbation feels aconstant
acceleration. This has to be compared to theconstant veloc-
ity we found for the model with a constant velocity profile,
see Sec. III A. However, for negativem, as explained above,
the actual solution is obtained by settingRst ,xd to zero in
regions where it would be negative otherwise. At the time at
which Rst ,xd becomes zero, the profileZst ,xd is frozen at its
present height. Due to this construction the final solution for
Zst ,xd will deviate from the simple form of Eq.s43d. For
positive m the profile Rst ,xd as obtained from Eq.s42d is
always non-negative. But there is the possibility that shocks
actually prevent the system to reach the asymptotic time re-
sult of Eq.s44d. In fact, independent of the initial parameters
of R0 and m, a shockalways occurs after a finite timets,
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unless the solutionRst ,xd of Eq. s44d becomes formally
negativesfor negativemd before the shock can appear. The
shock time is given by the general expression

ts =
1

maxR08sxd
. s45d

Remember that for the plug flowP model ssee Sec. IIId, a
shock appears only for slopesm which are larger than a
positive critical slope. For the model discussed here, shocks
can even occur at negative slopesm.

In the following, we will consider again a Gaussian per-
turbation in the layer of rolling grains,R0sxd=r0

3exps−x2/d2d. Then the shock time ists=Îe/2d / r0. Figure
11 shows the time evolution of this perturbation for both

positive and negativem. Plotted are the profilesZst ,xd−mx
and Zst ,xd−mx+Rst ,xd so that again the gap between the
profiles corresponds to the layer of rolling grains. For nega-
tive m all moving grains have come to rest at the timet=
−r0/m which is smaller than the shock time scalets for the
parameters used here. For positivem there is a uniform in-
crease in the thickness of the layer of rolling grains, see Fig.
11sbd. This increase is linear in time,,mt, and is unrelated
to the amplitude of the local perturbationR0sxd. This appar-
ently unphysical result can be understood from the structure
of Eq. s38bd. Even for a strictly localized initialR0sxd which
is zero outside a finite interval, there would be an increase
,s]xZdt sfor a constant sloped at all positionsx, not only
there whereR0sxd is nonzero. But since we divided the origi-
nal equations byR to obtain Eq.s38d, R=0 is a trivial solu-
tion. The latter solution should be matched with the finiteR
solution at the front of the avalanche. However, by defini-
tion, at the front the rolling layer becomes very thin, and a
strictly linear velocity profile is certainly an oversimplifica-
tion. Thus, with the model of this section, the matching of
the two solutions at the front is not justified. Instead, the
dynamical equations should be refined as to describe the
physical processes close to an avalanche front and the thin-
to-thick flow crossoversfor example, along the lines of Refs.
f33,37gd. This we leave to a future work.

B. Strong stress anisotropy: Smallb

1. Analytical results

Now we study the influence of finite horizontal stress with
a finite but smallb. An important consequence of a finiteb is
that now Eqs.s38d become coupled by the stress term. In
order to obtain the dynamic response to a local perturbation
we perturb about theb=0 solution of the previous section.
Following the analysis of Sec. III B, we make the ansatz

Z = Z1 + bZ2, s46ad

R= R1 + bR2, s46bd

whereZ1 andR1 denote the solution forb=0 of the previous
section, cf. Eqs.s41cd and s41dd. By expansion of Eqs.s38d
in b we obtain the dynamics of the contributions from finite
b,

]tZ2 = − ]xZ2 − ]xR1, s47ad

]tR2 = s1 + R2d]xR1 + R1]xR2 + ]xZ2. s47bd

To this coupled system of equations we can again apply the
method of characteristic curves. The resulting characteristic
equations for the corrections to the profiles are

]aZ2 + ]xR1]at = 0, s48ad

]bZ2 + s1 + R1d]bR2 − fs1 + R1dR2 + R1g]xR1]bt = 0,

s48bd

where the characteristic directions are the same as in the
unperturbed case,z+=1, z−=−R1. Again all functions in the

FIG. 11. ModelL with b=0: Profiles for a Gaussian profile
R0sxd with r0=0.7, d=5.0, and slopesad m=−0.1 sbd m=0.1, both
for times t=0, 3, and 7. The shock time ists=Îe/2d / r0=8.32. For
negativem the perturbation has stopped at the timet=−r0/m=7.0,
i.e., the profile shown for the latter time is the final bed profile. Note
that for positivem the thickness of the moving layer shows an
overall linear increase proportional tomt since for a Gaussian pro-
file, R0sxd is in fact small butfinite everywhere. For clarity, we
indicated explicitly the thicknessR of the mobile layer att=3.
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above equations have to be regarded as depending ona ,b.
Derivatives with respect tox can be rewritten by the use of
the relations

]xb = − S R1

1 + R1
D2

, ]xa =
]aR1 − R08sad

ms1 + R1d
. s49d

Using the latter relations, Eq.s48ad can be integrated with
respect toa. The result is

Z2sa,bd = −E
−b

a

da8
R08sa8d

1 + R1sa8,bd
. s50d

By inserting this solution into Eq.s48bd one obtains an ordi-
nary differential equationswith respect tobd for R2sa ,bd. In
formal analogy to Eq.s34d its solution can be written as

R2sa,bd = expFE
−a

b

db8g1sa,b8dGE
−a

b

db8g2sa,b8d

3expF−E
−a

b8
db9g1sa,b9dG , s51d

where the functionsg1 andg2 are now given by

g1sa,bd =
m

s1 + R1dfR0sad + m/R08sad − R1g
, s52ad

g2sa,bd =
1

1 + R1
FR1gsa,bd − ]b lnf1 + R0s− bdg

+ mE
a

−b

da8
R08sa8d

f1 + R1sa8,bdg3G . s52bd

Most of the integrals in Eq.s51d can be obtained in closed
form. After a tedious calculation the final result can be ex-
pressed in terms of single integrals, that we give for
completeness:

R2sa,bd =
1

1 + fR0sad − R1gR08sad/mHR08sad
m

FR1 − R0sad − lnS s1 + R1df1 + R0s− bdg
f1 + R0sadg2 DG

+E
−a

b

db8
R08s− b8dh1 + fR0sad − R1sa,b8dgR08sad/mj

f1 + R1sa,b8dgf1 + R0s− b8dg
−

R08sad
m

E
−b

a

da8
R08sa8d

1 + R1sa8,bd

− h1 + fR0sad + 1gR08sad/mjE
−b

a R08sa8dda8

fR1sa,bd + 1g2 − fR1sa8,bd + 1g2F 1 + R1sa,bd
1 + R1sa8,bd

−
1 + R1sa,− a8d

1 + R0sa8d
GJ s53d

Equations s50d and s53d provide the final result for the
changes in the profiles due to a finite horizontal stress. The
solution is valid forgeneralinitial profiles R0sxd. In Fig. 12
we have plotted this solution for a Gaussian perturbation
with the same parameters as in the previous section, cf. Fig.
11.

2. Physical discussion

The main difference coming from finiteb is the genera-
tion of a peak at the downhill front of the avalanche, both for
positive and negative slopesm. From the model of Eqs.s38d
one observes that the term proportional tob is controlled by
the slope of the moving layer. Since this slope becomes
steeper at the downhill front with evolving time, there is an
increasing thickness of the mobile layer close to the front.
From a physical point of view this amplification can be un-
derstood from the effect of the horizontal stress which in-
creases withR. Thus at the downhill front there is a net force
which pushes the material towards the front and induces an
extra growth of the rolling layer. As demonstrated by the
inset of Fig. 11 our result is in qualitative agreement with
measurements of the thickness of the mobile layer of grains

along the symmetry axis of a triangular shaped avalanche
moving on a static layer of limited thicknessf16g. For posi-
tive m there is, in addition to the homogeneous and linear
decrease ofZ, a net transport of grains of the sand bed from
the downhill front to the uphill end.

V. DISCUSSION AND CONCLUSION

In this paper, we have studied two sets of St. Venant equa-
tions for the modeling of granular avalanches on an erodible
bed. The models differ in the choice of the velocity profile
within the flowing layer—either a plug flowsPd or a profile
with a constant velocity gradientsLd—which give rise to
different nonlinearities. These models can be solved analyti-
cally by the method of characteristics, at least for sufficiently
large stress anisotropy, and we have focused our attention on
the situation where a uniform bed slope is initially disturbed
by a localized amount of rolling grains. We were able to
compute the space and time evolution of the avalanche
which either dies or grows, depending on whether the initial
slope is below or above the angle of repose.

Such unsteady and nonuniform flows are very demanding
for the models as the description of fronts and the generation
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of shocks must be addressed. For the case of a plug flow we
found that shocks occur at the uphill end of the avalanche
above a positive critical valuemc of the slope. Below this
value, the asymptotic large time behavior can be computed,
and we found that the amplitude and width of the avalanche
grow linearly in time if m.0, whereas for negativem the
initial perturbation decays exponentially and the width of the
deposited bump of grains scales like 1/m. For a linear veloc-
ity profile, shocks occur for all slopes at a finite time that can
be computed explicitly and is related to the shape of the
initial distribution of rolling grains. By contrast to the previ-
ous case, shocks are located at the front of the avalanche.

Our analysis shows that these models predict several in-
teresting qualitative features of granular avalanches, that can
be compared with experiments. However, in the present form
they also certainly have a number of shortcomings. The plug
flow assumption, for example, is not tenable for a rolling
layer thickness which starts to be of the order of several
grain diameters, as particles on the top of such a layer would
not feel the damping due to the friction on the bed. On the
other hand, the linear velocity hypothesis yields a vanishing
velocity U→0 when the thickness of the mobile layerR
→0, which forbids any front to move. However, shockless
and well defined propagative fronts are observed experimen-
tally in steadyf11g or unsteadyf38g situations. Our model
also does not correctly account for slope hysteresis which
should differentiate between a starting and a stopping angle,
fstart andfstop, respectively. In fact, the region betweenfstop
andfstart is precisely that of major interest as bed slopes with
an anglef.fstop are stable but can generate growing ava-
lanches when disturbed by a local amount of rolling grains.
Because the nonlinear terms in modelP are all proportional
to R, spontaneous avalanchessfor R=0d can never occur
whatever the value of the initial slope. This would corre-
spond to the maximal value ofp /2 for fstart. This, however,
implies that modelP can be applied to the experimentally
important regime of slopes which are only slightly larger
than fstop and sufficiently small compared tofstart. On the
other hand, the uniformly growing solution forR in modelL
can be interpreted as evidence that both anglesfstartandfstop
are identical so that beyond that angle avalanches occur even
at R=0 sunstable sloped.

To include the above mentioned effects in the presented
models, new directions have to be proposed. First, one can
modify the dynamical equations itself while keeping their
general structureshyperbolic first order differential equa-
tionsd with its analytic properties being tractable by the
method of characteristics. Second, additional physical input
could be used to either study the propagation of shocks be-
yond the shock time scale or one could implement boundary
conditions on, e.g., the slope of the profiles to describe the
dynamics close to the avalanche front. To be more specific,
we discuss two points of particular interest: The velocity
profile and hysteresis effects.

As proposed theoretically and demonstrated by experi-
ments, anR dependence of the flow velocity must be kept to
allow for thick avalanches. The commonly used strictly lin-
ear velocity profile with the rheological ansatzusx,yd=gy
sconstant shear rated leads to problems at the avalanche front
since the depth averaged velocityU should stay finite and of
the order ofÎgd whenR→0. A possibility is to letg diverge
in this limit. This would correspond to a crossover from
modelL to modelP below a certain small value forR of the
order of a grain diameterd ssee Ref.f33gd. The correspond-
ing matching of characteristic curves is technically involved
and, moreover, such a treatment would not provide an under-
standing of the physical mechanism of velocity selection. In
fact, close photos of the foot of the avalanche fronts reported
in Ref. f11g show a small gaslike region where grains are
ejected from the dense flow. This means that this zone is, in
a sense, outside of the present modeling framework and thus
could allow for a discontinuity inR, for example, or for

FIG. 12. ModelL with finite b=0.5 for the same parameters as
in Fig. 11. The plots are for timessad t=0, 3, and 6, andsbd t=0, 3,
and 7. For comparison, the corresponding profiles forb=0 are
shown as dashed curves. Notice that the peak appears rather sharp
due to the relative elongation of the vertical axis. Inset: For quali-
tative comparison, experimental results as given by Fig. 23 of Ref.
f16g for the surface velocityv and the local heighth of the mobile
layer which corresponds toR in our notation. A linear relation be-
tweenv andR is observed, and the shape ofR resembles that of our
analytical result.sThe direction of flow is inverted in the experi-
ment compared to our model.d
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imposing an extra constraint on the profilesR andZ or their
derivatives—e.g., a fixed slope of the free surface as ob-
served on propagative fronts. Another more fundamental ap-
proach would be to consider the velocityU as an indepen-
dent dynamical field whicha priori is not related toR by a
fixed velocity profile. Such kind of description has been ap-
plied to granular flow on afixedplanef12g so thatZ is not a
dynamical quantityf2g. However, for the case of avalanches
on an erodible bed considered in this paper, the coupling of
the dynamics of the flowing layer to the profilesZ andR via
an additional equation remains an open problem.

Another feature of sand piles that should be included in
the St. Venant models discussed here is the hysteresis of
avalanche dynamics as reflected by the existence of two criti-
cal angles. Experimentally it is observed that, at least for a
fixed profile Z, the critical angles are actually functions of
the thicknessR of the mobile layerf6,12g. Since the friction
coefficientm is given by the tangent of the actual angle of
the pile, a nonconstant friction coefficientmsRd is expected.
Indeed, at the scale of a single grain, the starting angle de-
pends on the depth of “traps” due to the roughness of the
static bedf25g. Therefore one should expect an increased
value ofm below a typical thicknessRtrap sof the order of a
grain diameterd. This increased value determines then the
staring anglefstart while them at largeR corresponds to the
stopping anglefstop. A sufficiently large value of the friction
coefficient at smallR would lead, for the points whereR
øRtrap, to a “freezing” of the sand bed profileZ at its current
value.

Both modifications, constraints on the profiles at the ava-
lanche front and a friction functionmsRd, do not change the
general structure of the dynamical equations studied in the
present paper. Thus the method of characteristics and our
predictions should prove useful for a better understanding
and modeling of nonstationary granular flow.
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APPENDIX A: METHOD OF CHARACTERISTIC CURVES

In this section a brief account of the general theory for
systems of partial differential of first order andhyperbolic
type is presented. Due to the relevance to granular flow prob-
lems we will concentrate on nonlinear systems consisting of
two equations for two functions of two independent vari-
ables. In the present context of this paper, the functions areR
and Z and the independent variables correspond to spacex
and timet. For such systems a complete mathematical theory
is availablef17g. Our presentation will follow closely the
latter reference.

For hyperbolic systems the notion of characteristic curves
is the central concept. Before introducing the general theory,
we would like to motivate the introduction of characteristic
curves or coordinates. This concept is particularly adapted to
the case where the number of equations equals the number of
independent variables. In the present case of two equations,
the objective of the method of characteristics is to introduce
instead ofst ,xd a new coordinate framesa ,bd so that along
the two families of curves of constant coordinatesa and b
the partial differential equations reduce toordinary differen-
tial equations with respect toa andb.

Let us demonstrate the method explicitly for the simple
case of one linear partial differential equation for a function
fst ,xd of the form

ast,xd]xf + bst,xd]t f + cst,xdf = 0. sA1d

The initial value will be prescribed at zero time,fst=0,xd
= f0sxd. First, we have to define the characteristic curves
ftsad, xsadg where a is a variable parametrizing a given
curve. These curves are specified in terms of their local tan-
gent vectorssvelocitiesd,

dx

da
= ast,xd,

dt

da
= bst,xd. sA2d

Integrating this equation yields a whole family of character-
istic curves which is parametrized by the starting positionx0
of the curves att=0 so thatxsa=0d=x0 andtsa=0d=0. This
ensures that from each position of the linet=0 exactly one
characteristic curve originates, providing the trajectory along
which the initial dataf0sxd can be propagated in time. In
order to see why the definition of Eq.sA2d is useful we
compute the change off along the characteristic curves,
yielding

df

da
+ cst,xdf = 0. sA3d

The crucial observation is that the latter equation is just an
ordinary differential equation, which is valid along the char-
acteristic curves. To find the final solutionfst ,xd to Eq. sA1d
one proceeds as follows. First, one solves Eq.sA2d to obtain
the relation betweenst ,xd and sa ,x0d. Second, the ordinary
differential Eq.sA3d is solved with the initial conditionfsa
=0d= f0sx0d which provides the solutionfsa ,x0d. Finally, the
parametersa and x0 are computed for a given coordinate
st ,xd to get the solutionfst ,xd in the original coordinate
frame.

Having outlined the general idea behind the method of
characteristics, we can go ahead and turn to the case of two
nonlinear hyperbolic equations for two functions. We will
consider a general system of the form

L1 = A1]tZ + B1]xZ + C1]tR+ D1]xR+ E1 = 0, sA4ad

L2 = A2]tZ + B2]xZ + C2]tR+ D2]xR+ E2 = 0 sA4bd

for the functionsRst ,xd and Zst ,xd, where the coefficients
A1,A2,B1, …, are known functions ofx,t ,R, andZ. The type
of this system depends on the coefficients. For the hyperbolic
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case in which we are interested here one needs thatac−b2

,0 with the functions

a = fA,Cg, 2b = fA,Dg + fB,Cg, c = fB,Dg, sA5d

wherefX,Yg=X1Y2−X2Y1.
The goal is again to reduce the above system to a system

of ordinary differential equations with respect to new coor-
dinatesa ,b. Since we have now to deal with two unknown
functionsRst ,xd andZst ,xd we start by searching for a linear
combinationL=l1L1+l2L2 of the differential operators in
Eq. sA4d so that the derivatives ofR and those ofZ combine
to derivatives in the same direction. These directions will be
the velocity vectors of the characteristic curves and thus de-
termine the new coordinate frame. Let us represent an arbi-
trary curve in thex-t plane byftssd, xssdg with s denoting
the running parameter along the curve—note thats finally
will play the role ofa or b. Then the condition that inL both
functionsR and Z are differentiated in the tangential direc-
tion of this curve reads

dt/ds

dx/ds
=

l1A1 + l2A2

l1B1 + l2B2
=

l1C1 + l2C2

l1D1 + l2D2
. sA6d

Next, we consider the change of the functionsR andZ along
the curveftssd ,xssdg. It is given by

dZ

ds
= ]tZdt/ds + ]xZdx/ds

and analogous forR. Multiplying L with either dx/ds or
dt/ds and using the conditions of Eq.sA6d one gets

dt

ds
L = sl1A1 + l2A2d

dZ

ds
+ sl1C1 + l2C2d

dR

ds

+ sl1E1 + l2E2d
dt

ds
, sA7ad

dx

ds
L = sl1B1 + l2B2d

dZ

ds
+ sl1D1 + l2D2d

dR

ds

+ sl1E1 + l2E2d
dx

ds
. sA7bd

If the functionsR and Z satisfy the system of differential
Eqs. sA4d we haveL=0, and we obtain the following four
homogeneous linear equations for the coefficientsl1 andl2
which result from Eq.sA6d and Eq.sA7d:

l1SA1
dx

ds
− B1

dt

ds
D + l2SA2

dx

ds
− B2

dt

ds
D = 0, sA8ad

l1SC1
dx

ds
− D1

dt

ds
D + l2SC2

dx

ds
− D2

dt

ds
D = 0, sA8bd

l1SA1
dZ

ds
+ C1

dR

ds
+ E1

dt

ds
D + l2SA2

dZ

ds
+ C2

dR

ds
+ E2

dt

ds
D

= 0, sA8cd

l1SB1
dZ

ds
+ D1

dR

ds
+ E1

dx

ds
D + l2SB2

dZ

ds
+ D2

dR

ds
+ E2

dx

ds
D

= 0. sA8dd

This system is obviously overdetermined. Thus, in order to
have a nontrivial solution, the determinant of every pair of
rows in the matrix of coefficients ofl1 andl2 has to vanish.
The relations following from this conditions are calledchar-
acteristic relations.

In particular, from the first two Eqs.sA8ad andsA8bd, one
obtains the condition

aS dx

ds
D2

− 2b
dt

ds

dx

ds
+ cS dt

ds
D2

= 0 sA9d

with the coefficients given by Eq.sA5d. From this condition
it becomes clear why the method of characteristics applies to
hyperbolic systems. For those systems we have, as men-
tioned above,ac−b2,0, and Eq.sA9d has two different so-
lutions and thus two different characteristic directions
sdx/ds, dt/dsd through each point. In the following we as-
sume, without any restrictions, thataÞ0 so thatdt/dsÞ0
and we can introduce the slope

z =
dx/ds

dt/ds
. sA10d

The two different real solutions ofaz2−2bz+c=0 for these
so-called characteristic directions will be denoted byz+ and
z−, respectively. These characteristic directions are in general
functions of t ,x,R, and Z. Two one-parameter families of
characteristic curves follow from the directions by integra-
tion of the ordinary differential equationsdx/dt
=z+sx,t ,R,Zd and dx/dt=z−sx,t ,R,Zd. In the following we
will denote the families of curves byC+ andC−. These two
families of curves define a curved coordinate net if the
curves are represented asasx,td=const andbsx,td=const for
family C− and C+, respectively. The functionsasx,td and
bsx,td are calledcharacteristic parameters. The coordinates
st ,xd corresponding to a given pairsa ,bd can be obtained as
follows. Consider a curveI given by fxssd, tssdg which has
nowhere a characteristic direction as tangential vector. In
practice,I will be usually the linet=0 where the initial data
are defined. In addition boundary conditions, e.g., a fixed
flux at a given position, can be specified by a curve withx
=const. Through the two pointss=a ands=b on the curveI
one follows the characteristic curve of familyC− and C+,
respectively, up to the point where the two curves intersect.
The new coordinates of this intersection pointst ,xd are then
sa ,bd. The characteristic parametersa and b can now re-
place the parameters for the curves of familyC+ and C−,
respectively, so that one hasdx/da=z+dt/da and dx/db
=z−dt/db.

Next, we have to find equations which determine the evo-
lution of the functionsR and Z along the characteristic
curves. This can be done by eliminatingl1 andl2 from Eqs.
sA8ad and sA8cd. Using dx/ds=zdt/ds, where z denotes
eitherz+ or z− ands is eithera or b, one obtains
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T
dZ

ds
+ saz − Sd

dR

ds
+ sKz − Hd

dt

ds
= 0, sA11d

with the coefficients

T = fA,Bg, S= fB,Cg, K = fA,Eg, H = fB,Eg.

sA12d

If we apply the latter equation to the curves ofC+ andC− and
combine them with the equations for the characteristic
curves, we finally obtain the following fourcharacteristic
equationswhich are differential equations for the four func-
tions xsa ,bd, tsa ,bd, Rsa ,bd, and Zsa ,bd and replace the
original system of Eq.sA4d,

]ax − z+]at = 0, sA13ad

]bx − z−]bt = 0, sA13bd

T]aZ + saz+ − Sd]aR+ sKz+ − Hd]at = 0, sA13cd

T]bZ + saz− − Sd]bR+ sKz− − Hd]bt = 0. sA13dd

All the coefficients in this system are known functions of
x,t ,R, and Z. It can be shown that every solution of this
characteristic system satisfies the original system of Eq.sA4d
provided that ]at]bx−]bt]ax=sz−−z+d]at]bt is nonzero.
With the derivation of Eq.sA13d we reached our initial ob-
jective to reduce the partial differential equations to a form
which resembles that of ordinary differential equations along
certain curves. This can be seen from the fact that each equa-
tion contains derivatives with respect to only one of the co-
ordinatesa andb. Moreover, the system has the convenient
property that the coefficients do not depend on the indepen-
dent variablesa andb.

Now we are in the position to outline the strategy for
solving an initial value problem for the system of Eq.sA4d.
Let us assume that the initial values of the functionsR andZ
are given on the linet=0 by R0sxd and Z0sxd, and that this
line has no characteristic directions. This line corresponds
then to the curveI introduced above. We may consider this
curve as the image of the characteristic parameters obeying
the relationa+b=0. Then we have to solve the system of
Eq. sA13d with the initial conditions

tsa,− ad = 0, xsa,− ad = a, Rsa,− ad = R0sad,

Zsa,− ad = Z0sad. sA14d

Due to the particular simple structure of the system of Eq.
sA13d, this problem can be treated as completely as the ini-
tial value problem for ordinary differential equations. It is
this formulation of the nonlinear hyperbolic flow problem
which we used throughout the paper to solve the partial dif-
ferential equations exactly. Finally, we note that this method
can be generalized to an arbitrary numbern of equations.
Then the system will haven characteristic directionszn and
correspondinglyn different families of characteristic curves.
However, then resulting characteristic parameters can no
longer be interpreted as a new coordinate frame since there
are only the two coordinatest andx.

APPENDIX B: DERIVATION OF THE SHOCK
CONDITION

In this appendix we first review the mechanism for the
generation of shocks and their mathematical definition. Then
we provide for modelP the details of the calculations for the
shock existence criterion and the time and position of the
shock. For modelL shocks are always generated, and we
derive the simple result of Eq.s45d for the shock time. In
Appendix A we have assumed that the characteristic curves
of one familyseitherC+ or C−d do not intersect. Only if this
is true is there a well defined mapping between the original
coordinatesst ,xd and the characteristic parameterssa ,bd.
However, depending on the initial data at zero time, it is
possible that characteristics of the same family intersect at a
finite time. Beyond this shock time the system of partial
differential equations fails to have a single valued solution
but only multivalued solutions or even no solution at all
exists at later times. The points of intersection of character-
istic curves are enclosed by an envelope, cf. Fig. 5. The
earliest time where a shock appears is the position of the
cusp of this envelope. Technically, the envelope is defined by
the condition that for every position on the envelope there
exists a characteristic curve that touches the envelope at the
position so that both curves have the same tangential direc-
tion. If we represent the envelope as(tesad, xesad) wherea is
used as the parameter changing along the envelope then the
conditions read

xa„tesad… = xesad, ]axastdt=tesad = 0, sB1d

wherexastd is the trajectory of the characteristic curve along
which a is constant. The second condition follows from the
requirement that the tangent vector(1, ]txastd) of the curve
xastd is parallel to the tangent(dtesad /da, dxesad /da) of the
envelope. To see this, one takes the derivative of the first
condition of Eq.sB1d with respect toa so that one obtains

dxesad
da

= ]txastd
dtesad

da
+ ]axastdt=tesad. sB2d

The collinearity of the two tangent vectors requires then the
last term on the right hand side of Eq.sB2d to vanish. Notice
that in modelP the characteristic curves along whichb is
constant are straight lines, and thus they can never produce a
shock.

In the following we focus on the initial profileR0sxd given
by Eq. s9d which allows for an explicit calculation of the
envelope and the condition for shocks. For this profile it is
useful to consider three different sectors in thet-x plane, see
Fig. 4. Using the above conditions, one obtains for the enve-
lope in sectorsII d the result

tesad =
1

m− 1/d
lnF−

m

h8sad
−

1

hsadG , sB3ad
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xesad =
1

m− 1/d
Fhsadesm−1/ddtesad + lnShsad

r0
D + ma − r0G ,

sB3bd

where the functionhsad is given by Eq.s18d. In sectorssId
and sIII d the conditions of Eq.sB1d cannot be satisfied and
thus the characteristics in these sectors never form an en-
velop. This can be seen as follows. In sectorsId, the charac-
teristics along whicha is constant are given by

xastd = a + R0sad
esm+1/ddt − 1

m+ 1/d
. sB4d

Using this expression, the second condition of Eq.sB1d be-
comes

0 = 1 +
R08sad

m+ 1/d
fesm+1/ddt − 1g. sB5d

For m+1/d.0, the term added to one on the right hand side
is positive fort.0 sinceR08sad.0 for negativea in sector
sId. In the opposite casem+1/d,0, the same argument ap-
plies since the expression in the square brackets is now nega-
tive for t.0. This shows that the right hand side is always
larger than 1, and the condition is never fulfilled. In sector
sIII d we use a different argument to show that noa=const
characteristics, which originate from positivex at t=0, form
an envelope. From the characteristics in sectorsIII d, the con-
ditions of Eq.sB1d are formally fulfilled by the expression

tesad =
1

m− 1/d
lnF1 −

m− 1/d

R08sad G , sB6ad

xesad = a −
R0sad
R08sad

sB6bd

for the envelope. However, it remains to be checked that this
curve is indeed located in sectorsIII d, i.e., if its coordinates
are larger than the boundary between sectorssII d andsIII d, cf.
Eq. s14bd, which yields

xesad .
r0

m− 1/d
fesm−1/ddtesad − 1g. sB7d

Using the definition ofR0sxd, cf. Eq. s9d, and the relation
R08sad=−s1/ddR0sad / f1+R0sadg, the latter condition turns
out to be equivalent to

lnSR0sad
r0

D +
r0

R0sad
, 1. sB8d

SinceR0sad / r0,1 for aÞ0, this condition is in fact never
fulfilled which proves the absence of shocks in sectorsIII d.

Knowing that shocks, i.e., the cusp of the envelope, can
occur only in sectorsII d we can try to obtain the condition
for shock generation and the time and position of the shock.
First consider a negative slopem,0. Then the characteris-
tics in sectorsII d saturate at large times,

lim
t→`

xastd =
r0

1/d − m
F1 −

m

r0
a −

1

r0
lnShsad

r0
DG . sB9d

Sincehsad is a monotonously decreasing function for nega-
tive a, the expression in the square brackets is monotonously
increasing ina. Thus the characteristics retain the original
order for all times, i.e., they never intersect. The situation is
more complicated for positivem. Let us assume that there
exists a finite valuemc so that only form.mc shocks are
produced. Then, one expects that atm=mc the timets for the
shock appearance tends to infinity in order to have no shocks
at finite times form,mc. Since the shock positionsts,xsd is
the cusp of the envelope, we have to analyze the large time
behavior of the envelope of Eq.sB3d. We start with the as-
sumption that the critical valuemc,1/d, and, in fact, at the
end we will confirm this assumption. Form,1/d one has
the asymptotic behaviortesad,−a, and thus we consider
large negative values fora in the following. The shock time
is given by the minimal time of the envelopets= tesamd with
am the parameter at the minimum, i.e.,dtesad /da=0 for a
=am. Then close to the critical slopemc, we expect thatam
→−`. For large negativea, the functionhsad of Eq. s18d
has the asymptotic form

hsad . r0
1−ns− madner0s1−nds1+a/dd sB10d

with n=s2/dd / sm+1/dd. Using this expansion in Eq.sB3d
the conditiondtesad /da=0 becomes at asymptotically large
a independent ofa and assumes the simple form

m=
n − 1

d
. sB11d

Since we assumed that the shock timets→`, this condition
has to be regarded as an equation for the critical slopem
=mc. Sincen depends onm the equation is quadratic inm,
and it has one negative solution which we have to discard
and the other solution gives the critical slope beyond which
shocks occur,

mc =
Î2 − 1

d
. sB12d

This is the result given in Eq.s19d. The behavior ofts close
to m=mc can be obtained by computing the leading correc-
tion to the sconstantd asymptotic expression fordtesad /da.
We find a correction,1/a which in turn yields the leading
order ofam close tomc,

am = −
1
Î2

1

m− mc
. sB13d

Since at large negativea the time coordinate of the envelope
behaves astesad,−a andts= tesamd, we obtain the following
power law for the shock time close to criticality:

ts ,
1

m− mc
, sB14d

as given by Eq.s20d. The precise timets and positionxs of
the shock is given form sufficiently close tomc by the en-
velope of Eq.sB3d at a=am of Eq. sB13d. At larger m the
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coordinatessts,xsd are difficult to compute. However, at suf-
ficiently largem closed formulas can be obtained. The reason
for this is that form larger than some threshold the minimum
of tesad is always atam=0, i.e., the shock is located on the
boundary between sectorssII d and sIII d. To see this, we ex-
pand the envelope of Eq.sB3d now around small negativea.
This gives

tesad =
1

m− 1/d
lnSmds1 + r0d − 1

r0
D

+
1 − 2r0dm

s1 + r0dfdms1 + r0d − 1g
a + Osa2d,

sB15ad

xesad = r0dS1 +
1

r0
D +

1 − 2r0dm

1 + r0
a + Osa2d. sB15bd

The minimum oftesad is ata=0 if the coefficient ofa in Eq.
sB15ad is negative. The denominator of this coefficient has to
be positive since otherwise the argument of the logarithm in
Eq. sB15ad would be negative. Thus if the slopem fulfills the
two conditionsm.1/s2r0dd and m.1/fds1+r0dg simulta-
neously then the shock position is given bysts,xsd=(tesa
=0d ,xesa=0d). As mentioned already in Sec. III A forr0

,1 the first condition is relevant whereas forr0.1 the latter
condition dominates. Now one may ask if it is possible that
mc is larger than latter thresholds so that the shock would
occur no longer atam of Eq. sB13d but atam=0, i.e., on the
boundary between sectorssII d andsIII d at rather small times.
In fact, for r0,1 the conditionmc.1/s2r0dd is never ful-
filled so that the minimum remains atam of Eq. sB13d. For
r0.1 the conditionmc.1/fds1+r0dg leads tor0.Î2. In the
latter case the shock occurs always atam=0 and the new
critical slope is given by 1/fds1+r0dg. However, it should
kept in mind that the width of the perturbationR0sxd of Eq.
s9d is proportional tod only for r0&1. For largerr0*1 the
width is proportional tor0d. From the first termxs=xesa
=0d in Eq. sB15bd we thus conclude that the shock occurs at
the uphill end of the avalanche with the shock position ap-
proximately given by the uphill end of the perturbation att
=0.

Finally, we study the generation of shocks for modelL.
We do this by using an approach which is more adapted to
the special structure of the solution of this model. We do not
use directly the definition of Eq.sB1d but look for a discon-
tinuity in the profileRst ,xd as a function ofx. If there is a
jump in Rst ,xd at some positionx then a shock is generated
and the earliest time where this happens if the shock timets.
We start from Eq.s42d which gives

Rsa,bd = R0sad + mt. sB16d

By taking the derivative with respect tox, one obtains

]xR= R08sad]xa. sB17d

Since R08sxd remains finite, we have to search for a diver-
gence in]xa. The characteristic parameterast ,xd can be ob-
tained from Eqs.s41cd and s42d which yield

ast,xd = x +
m

2
t2 + R0sadt, sB18d

which leads to

]xa =
1

1 − R08sadt
. sB19d

Since there is always an interval of values fora where a
localizedR0sxd has a positive derivative, shocks are gener-
atedalways. The time scalets for the occurrence of the shock
is the earliest time where]xa diverges, i.e., it is given by the
maximal slope of the initial perturbation,

ts =
1

maxR08sxd
, sB20d

which is Eq.s45d. The positionxs of the shock follows from
Eq. sB18d. For the Gaussian perturbationR0sxd=r0

3exps−x2/d2d discussed in Sec. IV A one hasts=Îe/2d / r0

and the position is given by

xs = − Î2d −
e

4
S ]

r0
D2

m. sB21d

Note that the shock occurs at the downhill front of the
avalanche as opposed to the uphill position in modelP.
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